

SPECIFICATION OF A MECHANISM FOR DIRECT ACCESS TO
DATABASES THROUGH WWW

Vagelis Zorbas
vzorbas@dblab.ntua.gr

Knowledge and Database Systems Laboratory,
National Technical University of Athens,

Zographou 157 73 Greece,
http://www.dblab.ntua.gr/

Yannis Stavrakas
ys@dblab.ntua.gr

Kostas Chatzinas

kchatzin@dblab.ntua.gr

1. SUMMARY
We present a model that allows database access through the Web, and whose
specification is based on Web standards. Users of the Web will be able to access
distant databases in a way similar to accessing hyper-documents. The model deals
with the expression of requests from web browsers to databases, in order to retrieve
stored information, and the transfer of results to web clients. In addition, we examine
the possibility of presenting results from many sources in the same web page, and of
selective incorporation of results into conventional hyper-text documents. A prototype
system has been implemented, demonstrating all the features described in this paper.
The present paper focuses on specifying in detail the mechanism we propose. A
description of the model and the architecture can be found in [1].

2. INTRODUCTION
Until recently, database access methods through the Web restricted all functionality
and control for database access to the server. These methods are also characterized by
the possible binding of applications to database structure, the limited interaction
allowed by applications, and the dependence on a specific web server. In the last
years, efforts have been made to implement new techniques for bringing databases
closer to Internet users. The Java [15,16] programming language and Microsoft’s
Dynamic HTML (D-HTML) [9,10] gave the web client the possibility to have more
control over the process of database access.

However a global standard that defines web client-driven database access has yet to be
defined. The way the Web merges with database information seems to be the result of
covering needs as they appear, rather than that of a careful and comprehensive study.

All existing methods for accomplishing database access are based on custom code and
especially built applications. Instead of proprietary methods and protocols, a more
generic model based on Web standards must be considered.

Using a global standard, databases could play a more active role in the Web,
increasing the availability of information, and taking advantage of the existence of the
Internet. It seems to us that a prerequisite for such a development is that databases
become first-class citizens and participate in the Web from a position similar to that of
the hyper-documents. Instead of being hidden behind applications, they must be
directly visible to Web users.

3. THE PROPOSED MODEL

3.1. Architecture
In promoting databases to first-class citizens in the Web, a basic concept seems to be
that the web client must be aware that databases exist and be able to express its
demands directly to them [1]. To make that possible, we must examine from this
perspective the triplet HTML-URL-HTTP and come up with adjustments that will
enable such operations.

• Extensions to HTTP [7,8] led to defining DBTP (Data Base Transfer Protocol), a
new communication protocol that supports the requirements and functionality of
the proposed mechanism.

• Extending URL [5,6] semantics led us to the definition of dbtpurl, a new URL
scheme, whose links define operations on databases available over the Web.

• Finally, in order to allow for flexible and controlled manipulation and presentation
of database results at client side, we augmented HTML with two new tags.

Figure 1. Proposed architecture for accessing databases through WWW

The architecture for the proposed system is illustrated in Figure 1. The components in
Figure 1 are the web client, which is an extended browser also called dbtp client, and
an especially built server named dbtp server. These components implement the
features presented in the following paragraphs.

3.2. URL Scheme
URL (Uniform Resource Locator) [5] is the standard way for specifying a resource
available on the Internet. Following the general URL syntax rules, we defined a new
URL scheme, tailored to database resources. The dbtpurl allows web users to specify
the database to connect to and the operations to perform, in a generic way.

dbtpurl = "dbtp://" login ["/"[["metadata" | Range] "/"] [dbName [":" query]]]
 login = [user[":"password] "@"] hostport
 hostport = host [":"port]
 Range = "Range:" *DIGIT "-" *DIGIT
 DbName = *unreserved
 Query = *xchar

Table 1. Formal definition of the dbtpurl

The formal definition of the new URL scheme is presented in Table 1 in augmented
BNF syntax [4]. Parts of this definition are the server IP address, the database name,
the database query, and additional information regarding the request. The tokens
“user”, “password”, “host”, “port”, ”DIGIT”, “unreserved” and “xchar” are further
defined in [5].

Additional request information supported by dbtpurl include:
• Username and password for user authorization against the database.
• Indication that the user would like to receive information about which databases

are available on a specific dtpt server.
• Indication that the user would like to receive meta-information on the schema of a

particular database.
• Indication that the user can receive only a maximum number of results.
• Indication that only a specified part of the database results should be returned to

the user.

The validity of the query part of the URL is ultimately determined by the database
which handles it. It can be any valid expression of the database own query language.
For SQL queries we provide the alternative to apply a simple encoding, mainly for the
sake of brevity, where SQL keywords are replaced by special characters.

Examples of dbtp URLs, accompanied with a short explanation, follow.

1. dbtp://name:pass@www.dbtpServer.com/range:0-20/BooksDB:# * ? Book
Apart from the protocol to be used (dbtp), the host, and the port the dbtp server is
listening to, this URL indicates the username and password for authenticating the
connection to the database and that the user wishes to receive only the first 20 lines of
the results. The encoded SQL query is interpreted by the dbtp server as “SELECT *
FROM Book”.
2. dbtp://www.dbtpServer.com/
Alternatively: dbtp://www.dbtpServer.com/metadata/
As a result to the above requests, metadata on the services offered by the server are
sent by the dbtp server back to the dbtp client. Metadata may include the names and
schemas of the databases exposed by the dbtp server, and information on the server
capabilities.

3.3. Communication Protocol
The principal question is whether HTTP can accommodate the dbtpurl features. The
answer is an initial yes; HTTP could be used for serving database communication
needs, either extended or not:

• Leaving HTTP unmodified means that dbtpurl-related information must be added
at low level inside the body of the existing HTTP messages, since the higher level
HTTP methods refer to documents and are not suitable to databases. This means
that if HTTP is used as is, the semantics of a new protocol are “burried” inside
HTTP infrastructure. This solution is not satisfactory, as the HTTP methods will
be overridden by semantically irrelevant information hidden inside the HTTP
messages body.

• Extending HTTP to incorporate new functionality for serving dbtpurl requests, is
the second solution we considered. It seems that an extended HTTP protocol could
support dbtpurl needs. However, this approach may present a few drawbacks: (1)
HTTP operations could prove inadequate for the required functionality. HTTP
security and caching would probably need modifications to stand for databases as
well. (2) The new protocol would become heavy and complicated, trying to serve
both hyper-documents and databases.

Our approach was to build a new protocol from scratch, because of the advantages this
solution has:
• A new protocol can be fully adapted to the dbtpurl needs. Operations like

connection duration, message encoding, caching and security, can be designed
with database communication in mind.

• The new protocol, being independent from HTTP, could be selectively deployed
from web browsers and specialized dbtp servers.

DBTP-message = DBTP-Request | DBTP-Response

DBTP-request = Request-Line DBTP-response = Status-Line
 |*(general-header |*(general-header
 | request-header | response-header
 | entity-header) | entity-header)
 CRLF CRLF
 [message-body] [message-body]

Request-Line = Method SP dbName SP DBTP-Version CRLF
Status-Line = DBTP-Version SP Status-Code SP Reason-Phrase CRLF
DBTP-Version = "DBTP" "/" 1 *DIGIT "." 1 *DIGIT
Request-header = Authorization Entity-header = Content-Length
 | Maxlines | Content-Type
 | Range
 | Query-Encoding
Method = "query" Status Code = “200” ; OK
 | "metadata" “206” ; Partial Content
dbName = "*" “400” ; Bad Request
 | token “401” ; Unauthorized
 “420” ; Bad Query
 “500” ; Server Error

 “505” ; Version not
 supported
Authorization = "Authorization" ":" userid ":" password
Maxlines = "Maxlines" ":" *DIGIT
Range = "Range" ":" *DIGIT "-" *DIGIT
Query-Encoding = token
Content-Length = "Content-Length" ":" 1*DIGIT
Content-Type = "Content-Type" ":" type "/" subtype

(SP = Space, CRLF = Carriage Return, Line Feed)

Table 2. Formal definition of the DBTP message

DBTP, a new Internet protocol, has been formally defined in terms of BNF. It is an
application level protocol designed to work over a reliable transport protocol (like
TCP), with the following features:

• Its operation is based on the request/response paradigm. A dbtp client
establishes a connection with a dbtp server, sends a Request message to the
server, receives a Response message from the server and finally the server
closes the connection.

• It is an object oriented, human readable and stateless protocol.
• The communication unit of the protocol is the message. Request and Response

messages carry the client’s database request to the server, and the database
response back to the client.

• Its operation and the form of messages are similar to those used in HTTP.

The formal definition, in augmented BNF [4], of the dbtp messages is given in Table
2. The tokens “token”, “type”, “subtype”, “DIGIT”, “userid”, “password”, “SP”,
“CRLF” are further defined in [8].

A mapping of dbtpurl to DBTP Request messages has been defined in detail. The
information is carried into headers alike to HTTP messages.

A sample of dbtp messages follows, based on the 1st example of the dbtp URLs given
in a previous section:
• The DBTP Request message issued by the dbtp client:

“ query BooksDB DBTP/1.0 \r\n
 Authorization: name : pass\r\n
 Range: 0-20\r\n
 \r\n
 # * ? Book ”

• A possible answer from the Server could be the following dbtp Response message:
“ DBTP/1.0 200 Query Executed\r\n
 \r\n
 <Results From Database> ”

3.4. HTML Extensions
The dbtp client can display the database results directly, formatted as HTML table.
However, it should be possible for the dbtp client to select data from the results, and
insert them at specific positions in a web page that will be the actual response [1]. In

order to enable this selective merging of data and hypertext at the client side, we
extended HTML with the following tags:

1. The <fetch> tag specifies a URL, dbtpurl or conventional, whose contents are
accessed and stored locally on the client, but not immediately displayed.

2. The <insert> tag, refers by name (through the “src” attribute) to a <fetch> tag and
specifies a subset or all of the data corresponding to the <fetch> URL. Those data
substitute <insert> at its location, and are subsequently presented as part of the
web page. The optional attributes “row” and “col” can be used in the case of
referring to database results, to specify pieces of data to insert at given locations of
the web page.

<!ELEMENT FETCH - O EMPTY>
<!ATTLIST FETCH
 name NAME #REQUIRED

href %URL #REQUIRED
>

<!ELEMENT INSERT - O EMPTY>
<!ATTLIST FETCH
 src NAME #REQUIRED

row NUMBER #IMPLIED
col NUMBER #IMPLIED
>

Table 3. Formal definition of the FETCH and INSERT tags

Multiple <fetch> and <insert> tags can be used in the same HTML page. In case the
<fetch> URLs are conventional URLs referring to HTML documents, <insert> tags
can be used to dynamically interpose HTML documents in the current page. This is
advantageous because documents automatically reflect changes made at their site of
origin. In case the <fetch> URLs are dbtpurl however, those tags become even more
useful as they offer a way to selectively incorporate data returned from databases in a
web page. This mechanism can be thought of as a way to define views over
hyperdocuments and structured data.

Formally, in terms of SGML [12], the two tags are defined in Table 3.

4. SYSTEM OPERATION
As an example we will consider an extended HTML page residing at a web server
with address “latest.resources.com”. This page will provide to the user the latest
information on XML from other web and dbtp servers. The page will contain <fetch>
and <insert> tags and will be automatically updated by the user’s extended browser.
Let us assume that there is a dbtp server, the gorgon.com server that serves a book
database. The XML specification that resides on the W3C organization server, will be
also “fetched” by the extended browser.
Analytically the transactions that will take place are the following:

• The URL “http://latest.resources.com/XML/main.html” will be inserted from the
user into the extended browser. The following page will then be downloaded by

the extended web client using the HTTP protocol.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
 <title>Latest XML Resources</title>
</head>
<body>
<h3>The latest XML specifications from W3C</h3>
 <p>
 <FETCH NAME="W3C" HREF="http://w3c.com/xml/">
 <INSERT SRC=W3C>
 </p>
<hr>
<h3>Books on XML available from the bookstore gorgon.com</h3>
 <p>
 <FETCH NAME="gorgon" HREF="dbtp://www.gorgon.com/BooksDB:
 # * ? Books % Category='XML'">
 <INSERT SRC="gorgon">
 </p>
<hr>
</body>
</html>

• The dbtp client will parse the HTML document, and for every FETCH tag, the
resource indicated will be downloaded and inserted appropriately into the
document.

• The result will be a new HTML page, without extensions (fetch and insert tags),
that will be presented to the user using a commercial browser. The result page will
be comprised of an HTML page retrieved from the W3C web site and an HTML
table containing database results retrieved from the BooksDB database, served by
the gorgon.com server.

Both the browser extension and the dbtp server are available for downloading and
testing at the Web address http://www.dbnet.ece.ntua.gr/~ys/dbtp/bin/. Installation
instructions and brief tutorial are available at the same address in the file
“manuals.doc”.

5. CONSIDERATIONS AND FUTURE ENHANCEMENTS
As possible directions for future work we consider:
• XML use:
Using XML [13] for formatting database results would have significant advantages
over HTML. With XML the need to define extensions to HTML would be eliminated,
and the merging of hypertext and database results could be designed in a more
efficient way.
• Security:

http://www.dbnet.ece.ntua.gr/~ys/dbtp/bin/

One of the most important features that have to be added to the system is security,
since database information can be very critical.
• Applet Version:
The dbtp client is developed as a Java program. An applet version of the program
would give the advantage of publishing the program to every web browser supporting
Java.
• Dynamic Insertion:
It would be desirable that the users be able to dynamically formulate the HTML page
after the retrieval of documents and database results indicated by FETCH tag URLs.
• Dynamic metadata manipulation:
Dbtp server metadata are currently only presented to the end-user by the dbtp client. A
more interactive model is desirable, where the browser will guide the end user to the
information he wants, taking advantage of the server’s metadata.
• Joining results at client side:
Extending the dbtp client in the direction of performing joins over one ore more
database sites is a subject that should be analyzed. Relevant work [14] must be
evaluated in conjunction to the designed model
• Statefull DBTP:
Database transactions involve consequent queries posed to a database. A persistent
connection between the dbtp client and the dbtp server would have many advantages
in that case.
• Caching
Caching mechanisms similar to the one used in HTTP, could be designed and
employed to enhance database access efficiency.

6. REFERENCES
[1] Yannis Stavrakas, Nikos Karayiannidis, Panos Vassiliadis. “Direct Access to

Databases through WWW Browsers”, Hellenic Conference on New
Information Technologies (NIT 98), Athens, Greece 1998 (In Greek).

[2] Kris Jamsa, Suleiman Lalani, Steve Weakly. “Web Programming”, Jamsa
Press.

[3] Martin Rennhackkamp. “Basic Web Architectures”, DBMS, May 1997.
[4] David H. Crocker, “Standard for the format of ARPA Internet text messages”,

Chapter 2: “Notational Conventions”, http://www.ietf.org/rfc/rfc0822.txt,
August 1982.

[5] T. Berners-Lee, L. Masinter, M. McCahill. "Uniform Resource Locators",
http://www.ietf.org/rfc/rfc1738.txt, December 1994.

[6] R. Fielding. "Relative Uniform Resource Locators", http://www.ietf.org
/rfc/rfc1808.txt, June 1995.

[7] R. Fielding, H. Frystyk, T. Berners-Lee. “HTTP Version 1.0",
http://www.ietf.org/rfc/rfc1945.txt, May 1996.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, T. Berners-Lee. "HTTP
Version 1.1", http://www.ietf.org/rfc/rfc2068.txt, Jan 1997.

[9] Dave Raggett, Arnaud Le Hors, Ian Jacobs. "HTML 4.0 Specification", W3C
Proposed Recommendation 7-Nov-1997, PR-HTML40-971107
http://www.w3.org/TR/PR-html40/cover.html.

[10] Rick Dobson. “Data Binding in Dynamic HTML”, DBMS, March 1998.
[11] “Document Object Model”, http://www.w3.org/DOM/, September 1997.

http://www.w3.org/TR/PR-html40/cover.html

[12] “Standard Generalized Markup Language” (SGML). Published specification
ISO 8879, http://www.iso.ch/cate/d16387.html.

[13] Tim Bray, Jean Paoli, C.M.Sperberg-McQueen. “Extensible Markup Language
(XML) 1.0”, http://www.w3.org/TR/1998/REC-xml-19980210.

[14] S.S. Bhowmick, W.-K Ng , E.P. Lim, S.K. Madria. “Join Processing in Web
Databases”, DEXA98, August 1998, http://www.cais.ntu.edu.sg:8000
/~wkn/paper/dexa98.ps.gz.

[15] M. Campione, K. Walrath. “The Java Tutorial”.
[16] Patrick Chan, Rosanna Lee. “The Java Class Libraries”, Addison-Wesley.

