Multidimensional XPath

Nikolaos Fousteris
Department of Archive and
Library Sciences,

Yannis Stavrakas
Institute for the Management
of Information Systems (IMIS),

Manolis Gergatsoulis
Department of Archive and
Library Sciences,

lonian University R. C. Athena, lonian University
loannou Theotoki 72, G. Mpakou 17, 11524, Athens, loannou Theotoki 72,
49100 Corfu, Greece. Greece. 49100 Corfu, Greece.

nfouster@ionio.gr

ABSTRACT

In Web applications it is often required to manipulate infor-
mation of semistructured nature, which may present vari-
ations according to different circumstances. Multidimen-
sional XML (MXML) is an extension of XML suitable for
representing data that assume different facets, having dif-
ferent value and structure, under different contexts. In this
paper, we consider the problem of navigating and querying
MXML. Navigating and querying must take into account the
additional features of MXML compared to XML. Those fea-
tures stem from the incorporation of context into MXML. In
this paper we introduce an extension of XPath called Mul-
tidimensional XPath (MXPath), which is suitable for navi-
gating in MXML documents, and allows for context-aware
querying. We present the syntax of MXPath, we provide
several examples demonstrating its use and investigate its
semantics.

Categories and Subject Descriptors

H.2 [Database management]: Languages—query languages;

H.2.1 [Logical Design]: Data models

General Terms

Semistructured databases

Keywords

Multidimensional semistructured databases, XPath, XML,
XML query

1. INTRODUCTION

In recent WWW applications, it is often necessary to ma-
nipulate a huge amount of semistructured data, often repre-
sented in XML format [1, 6]. Moreover, in many occasions,
there is need to handle different variants of the same infor-
mation entity, depending on parameters such as the back-
ground and situation of the user, or the capabilities of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

yannis@inmis.gr

manolis@ionio.gr

device presenting the information. Multidimensional XML
(MXML) [16] is an extension of XML suitable for represent-
ing and exchanging information presenting different variants
(or facets), having different value or structure, under differ-
ent contexts. Contexts are specified by giving values to one
or more user defined parameters, called dimensions.

Multidimensional XML is an instance of the more general
formalism of Multidimensional Semistructured Data [23, 22].
Multidimensional XML (and Multidimensional Semistruc-
tured Data) has been proved useful for various applications.
Between them we can mention the representation of the his-
tory of XML documents [15] or semistructured data [24]
as well as the representation and delivery of multidimen-
sional information in the web [17]. In [9, 10], the formal-
ism of multidimensional semistructured data is adopted for
representing contextual information within the service di-
rectory. In [19], a model and mechanisms for supporting
context-dependent information delivery, based on an ap-
proach which is similar to the multidimensional semistruc-
tured data model, are proposed.

The main contribution of this paper is that we propose an
extension of XPath called Multidimensional XPath (MX-
Path) for navigating and querying MXML documents. MX-
Path takes dimensions and context into account in order to
specify navigation patterns in MXML graphs. We present
the syntax of MXPath and explain how it takes context into
account in order to navigate in MXML graphs. We illus-
trate the use of MXPath through a number of appropriate
example queries over a MXML document and investigate the
relation of MXPath with the conventional XPath, when con-
sidering XML instances of MXML documents. Also, we ex-
plain how MXPath may be used to extend other languages,
such as XQuery and XSLT, which are based on XPath ex-
pressions.

Until now, a number of query languages for XML have
been proposed [2, 4, 18, 20, 21]. XPath [8] provides navi-
gation abilities within a XML document. For that reason,
XPath is a basic ingredient in many query languages [5, 7,
25]. On the other hand, there are some research papers [3,
11, 26] proposing extensions of XPath. However, all these
papers, consider only temporal extensions to XPath. More
specifically, in [26] an extension of the XPath data model
to include valid time is presented. In [3], it is proposed a

bear this notice and the full citation on the first page. To copy otherwise, to logical data model for representing histories of XML docu-
republish, to post on servers or to redistribute to lists, requires prior specific ments. The proposed model extends the XPath data model,

permission and/or a fee.
iIWAS 2008.inz, Austria
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

and is capable of representing change histories of XML docu-
ments. Also, in [11] it is presented a transaction-time XPath

(TTPATH) data model and query language. The TTX-
Path query language extends XPath with a transaction-time
axis to enable a query to access past or future states of a
XML document, and with constructs to extract and compare
times.

The structure for the rest of this paper is the following:
Section 2 presents the syntax and the main properties of
MXML and XPath. Section 3 presents the MXPath ex-
tension and explains its use through examples. Section 4,
investigates the relation of MXPath with the conventional
XPath, when considering XML instances of MXML doc-
uments. Section 5 discusses possible extensions of other
XPath-based languages. Finally, Section 6 summarizes the
paper and gives topics for future work.

2. PRELIMINARIES

2.1 Multidimensional XML (MXML)

In Mutidimensional XML (MXML), data assume differ-
ent facets, having different value or structure, under dif-
ferent contexts [16, 17]. Contexts are described through
syntactic constructs called context specifiers and are used to
specify sets of worlds by imposing constraints on the values
that a set of user defined dimensions can take. A world,
which represents an environment under which data obtain
meaning, is determined by assigning a single value to every
dimension, taken from the domain of the dimension. The
elements/attributes that have different facets under differ-
ent contexts are called multidimensional elements/attributes
while their facets are called context elements/attributes, and
are accompanied with a corresponding context specifier de-
noting the set of worlds under which each facet is the holding
one. The syntax of multidimensional elements is as follows:

<Q@element_name attribute_specification>
[context_specifier_1]
<element_name attribute_specification_1>
element_content_1
</element_name>

[/1

[context_specifier_N]
<element_name attribute_specification_N>
element_content_N
</element_name>
[/1

</@element_name>

To declare a multidimensional attribute the following syn-
tax is used:

attribute_name =
[context_specifier_1] attribute_value_1 [/]
[context_specifier_n] attribute_value_n [/]

For more details on MXML the reader may refer to [16].

EXAMPLE 1. The MXML document shown below describes
a specific car model, whose specification vary according to
the factory it is produced, and the market it is exported.
Two dimensions are used in the document. The dimension
factory whose domain is {Japan, Italy}, and the dimen-
sion market whose domain is {USA, Europe}.

<car type=[factory=Japan]"sport"[/]
[factory=Italy]"family"[/]1>
<@designer>
[factory=Japan]
<designer>groupo Bertone</designer>
[/]
[factory=Italy,market=Europe]
<designer>Pedro Seelig</designer>
[/]
[factory=Italy,market=USA]
<designer>Rollo Dixon</designer>
/]
</@designer>
<@engine>
[factory=Japan]
<engine>
<capacity>1.81t</capacity>
<@power>
[market=Europe]
<power>180hp</power>
[/1
[market=USA]
<power>200hp</power>
/1
</@power>
</engine>
[/]
[factory=Italy]
<engine>
<capacity>1.61t</capacity>
<@power>
[market=Europe]
<power>120hp</power>
/]
[market=USA]
<power>140hp</power>
/1
</@power>
</engine>
[/1
</@engine>
<@performance>
[factory=Japan]
<performance>
<top_speed>250km/h</top_speed>
<@acceleration>
[market=Europe]
<acceleration>0-100 in 6sec
</acceleration>
/1
[market=USA]
<acceleration>0-100 in 5sec
</acceleration>
/1
</@acceleration>
</performance>
[/]
[factory=Italyl]
<performance>
<acceleration>0-100 in b5sec
<acceleration/>
<@top_speed>
[market=Europe]

[/1
[market=USA]

[/]
</@top_speed>
</performance>

(/1

<top_speed>200km/h</top_speed>

<top_speed>210km/h</top_speed>

</@performance>
</car>

Notice that the name of a multidimensional element is
preceded by the symbol @ while the corresponding context el-
ements have the same element name but without the symbol
.

MXML documents can be represented using a node-based
graphical model called MXML-graph [12]. The MXML-
graph in Figure 1 represents the MXML document presented
in Example 1. For saving space, obvious abbreviations for di-
mension names and dimension values are used. IDs assigned
to nodes are used in this paper to facilitate the reference to
the nodes.

2.2 XPath

XPath (XML Path Language) [8] is a language proposed
by W3C for addressing portions of a XML document. XPath
is based on a tree representation of a XML document, and
provides the ability to navigate through elements and at-
tributes in the XML tree, selecting nodes by specifying a
variety of criteria. The basic structural unit of XPath is
the XPath expression, which may return either a node-set, a
string, a Boolean, or a number. The most common kind of
XPath expression, which is used in XPath to select nodes or
node-sets in an XML document, is the path ezpression (or
location path expression).

A path expression is written as a sequence of steps (called
location steps) to get from one XML node (the current con-
text node) to another node or set of nodes. Notice that the
term “context node” used in XPath refers to the XML tree
node which is considered as the current node for the evalu-
ation of the XPath expression, and has a different meaning
than the term “context” when used in MXML and MXPath.
The location steps are separated by “/” characters. Using
the path expressions of XPath, nodes in a XML document
may be selected by following the specified location steps. A
location step has three components:

1. an azis which defines the tree-relationship between the
selected nodes and the current node,

2. a node-test which identifies a node within an axis, and

3. zero or more predicates (to further refine the selected
node-set).

According to the above components, the syntax for each
location step is the following:

axisname: :nodetest [predicate_1]... [predicate_n]

A “/” in front of a XPath denotes the root node of the
document. XPath may have an expanded or an abbreviated
syntaz.

EXAMPLE 2. Consider the following path expression which
is written according to the expanded syntax:

child: :A/descendant-or-self: :node()/child: :B
/child: :*[position()=1]

Notice that this expression selects the first element (speci-
fied by the predicate “[position() = 1]”), whatever its name

(specified by “*”), that is a child element (“child” azis) of
a B element that itself is either a child or a child of a de-
scendant (specified by ‘‘descendant-or-self::node()”) of
an element A that is a child of the current context node (as
the expression does not begin with a “/”). Notice that in the
above “expanded syntax”, in each step of the XPath expres-
ston, the azis (e.g. “child” or “descendant-or-self”) is
explicitly specified, followed by “::” and then the node test,
such as “A” or “node()”.

The above XPath expression can be written in the abbre-
viated form as follows:

A//B/*[1]

In the above abbreviated form, the axis child is omit-
ted, the expression “[position()=1]"is abbreviated to “[1]”
and the expression “/descendant-or-self: :node()/” is re-
placed by “//”.

2.3 Context Specifiers and their properties in
MXML

The central notion related to MXML is the notion of
world. A world is determined by assigning values to a set S
of dimensions.

DEFINITION 1. Let S be a set of dimension names and
for each d € S, let Dy, with Dg # 0, be the domain of d.
A world w is a set of pairs (d,u), where d € S and u € Dq
such that for every dimension name in S there is exactly one
element in w. The set of all possible worlds is denoted by U.

In MXML, context specifiers qualifying context edges give
the explicit contexts of the nodes to which the edges lead.
The explicit context of all the other nodes is by definition
the universal context represented by [], denoting the set of
all possible worlds 4. When elements and attributes are
combined to form a MXML document, their explicit con-
texts do not alone determine the worlds under which each
element /attribute holds, since when an element/attribute e
is part of another element e;, then e2 have substance only
under the worlds that e; has substance. This is conceived
as if the context of e; is inherited to e2. The context prop-
agated in that way is combined with the explicit context of
a node to give its inherited context. Formally, the inherited
context ic(g) of a node g is ic(q) = ic(p) N° ec(q), where
ic(p) is the inherited context of its parent node p and N° is
the context intersection defined in [23], which combines two
context specifiers and computes a new one representing the
intersection of the worlds specified by the original specifiers.
The evaluation of the inherited context starts from the root
of the MXML-graph. By definition, the inherited context
of the root is the universal context []. Contexts are not
inherited through attribute reference edges. As in conven-
tional XML, the leaf nodes of MXML-graphs must be value
nodes. The inherited context coverage (icc) of a node further
constraints its inherited context, so as to contain only the
worlds under which the node has access to some value node.
This property is important for navigation and querying, but
also for the reduction of MXML to XML [12]. The inher-
ited context coverage gives the true context of a node within
the frame of a document, taking into account the context of
parent and child nodes. The icc(n) of a node n is defined
as follows: if n is a value node then icc(n) = ic(n); else if

Symbol Table
0 A root node
|E multidimensional element node
type 2 1 IE multidimensional attribute node
[fa=if] Na=if car @ context element node
@ context attribute node
3 5 @ value node
type type 17 ——p element/attribute/value edge
d — element/attribute context edge
engine . » attribute reference edge
4 6 =l =it
. [fa=jp] 36
“sport” “family” - performaQe
18 . fa=ip] [fa=i]
engine engine 37 46
deS| ner performance performance
maf‘usl capacity ~ power capfc“y "~ %8 " 47 50
[fa_|t I [mar=us] [[mar=us] °pd acee e‘r\atmn acceleranon top seeed
mened | [mar=eu] [mar=eu] spee [mar=us] I [mar—us]
% é [mar—eu] [mar—eu]
deS|gner 25
de5|gner 20 power 29 power |/t
capacity 2 capacity 32 acce ion top
de5|gner power 35 top accel/hon speed
. power 26 speed accel/t|on top
RoIIo 21 30 sp ed
D|xon “200hp” “140hp” “0-100 in
“groupo T B P sl VN 5 sec”
Bertone” — 2 33 50 43 0- 100 in
edro “ »
« » “0- i 8sec” « «
Seelig” “180hp” 120hp ke O 100.'" 200 210”
6 sec’ km/h? km/h

Figure 1: Graphical representation of MXML (MXML graph)

n is a leaf node but not a value node then icc(n) —;
otherwise icc(n) = ice(ni) U° ice(ng) U° ... US ice(ny), where
ni,...,n; are the child element nodes of n. [—] stands for
the empty context specifier which represents the empty set
of worlds. U° is the context union operator defined in [23]
which combines two context specifiers and computes a new
one representing the union of the worlds specified by the
original context specifiers.

EXAMPLE 3. In Figure 2 we see a fragment of the MXML
graph of Figure 1 annotated with the inherited context cov-
erage (icc) of every node.

3. MULTIDIMENSIONAL XPATH

In this section we propose Multidimensional XPath (MX-
Path) as an extension of XPath used to navigate through
MXML-graphs. In addition to the conventional XPath func-
tionality, MXPath uses the inherited context coverage and
the explicit context of MXML in order to select nodes in the
MXML document. Similarly to XPath, MXPath uses path
expressions as a sequence of steps to get from one MXML
node to another node or set of nodes.

In a MXPath, selection criteria concerning the explicit
context are expressed through explicit context qualifiers. Se-
lection criteria concerning the inherited context coverage are

expressed through the inherited coverage qualifier, which is
placed at the beginning of the expression.

3.1 MXPath Syntax

An MXPath expression contains an inherited coverage qual-
ifier (or icc qualifier for short) followed by the MXPath ex-
pression body. The inherited context qualifier is placed at
the beginning of the expression and it filters the resulting
nodes according to their inherited context coverage (icc).
The general syntax of an MXPath expression is:

[inherited_coverage_qualifier],
MXPath_expression_body

An MXPath expression may return either multidimensional
nodes or context nodes. In what follows we brake down
MXPath expressions, and specify each part separately.

3.1.1 Inherited coverage qualifier

The syntax of the inherited coverage qualifier is:
icc() comparison_op context_specifier_expression

where comparison_op is one of the operators in the set { =,
=, <, > <=, >=}.
Notice that as we can conclude from the definition of the

[]
[]
[]

en

17 icc=[fa in {ip,it}]
ine

N,
lfa=it]

«Q

27 icc=[fa=it]
engine

28 31 jec=[fa=it,mar in {eu,us}]

caplacity ico=[fa=i] power
[1 [mar=us]
[mar=eu] icc=[fa=it,mar=us]
29 icc=[fa=if] ;%)34
capacity 32 power
power icc=[fa=it, icc=[fa=it mar=us]
mar=euj 35
3(.) . “140hp”
“1.6lt" icc=[fa=if]))
33 icc=[fa=it mar=eu]

“120hp”

Figure 2: Representing the Inherited Context Cov-
erage

inherited context coverage, for the nodes in a path contain-
ing the nodes r,n1, ..., ng, where r is the root of the MXML
tree, we have icc(nk) C ice(ng—1) C --- C dce(r). Thus
ice(nk) denotes the worlds under which the complete path
holds. The function icc() returns the icc of the currently
evaluated path in MXML. The icc of the path is compared
against the context_specifier, according to the comparison
operator. The operator = tests for equality, < tests for proper
subset, > for proper superset, etc. Note that it is actually
the sets of worlds represented by the contexts that are com-
pared. In case the comparison returns false, the current path
is rejected and not considered further. In case the inherited
context qualifier is omitted in an MXPath expression, the
default is implied: icc() >= "-", which evaluates always to
true.

3.1.2 MXPath expression body

MXPath expression body corresponds to XPath expres-
sions in (conventional) XPath. As in XPath, in MXPath
we also have two types of expression bodies, namely the
absolute and the relative. An absolute MXPath expression
body is a relative MXPath expression body preceded by the
symbol “/” which denotes the root of the MXML tree. An
MXPath_expression_body is composed by one of more MX-
Path steps separated by “/”. Thus, the syntax of a relative
MXPath_expression_body is of the form:

MXPath_step_1/MXPath_step_2/.../MXPath_step_n

3.1.3 MXPath steps

MXPath steps may return either multidimensional or con-
text nodes. Therefore, there are two types of MXPath steps,
namely, the Context MXPath steps that return context nodes,
and the Multidimensional MXPath steps that return multi-

dimensional nodes.
The syntax of a Context MXPath step is as follows:

axis::node_test[pred_1] [pred_2]... [pred_n]

while the syntax of a Multidimensional MXPath step is
as follows:

axis->node_test[pred_1] [pred_2]... [pred_n]

Notice that, as in (conventional) XPath, both types of
MXPath steps contain an azis, a node test and zero or more
predicates. The only difference is that in a context MXPath
step the axis is followed by the symbol “::” which denotes
that the step evaluates to context nodes, while in a Multidi-
mensional MXPath step axis is followed by the symbol “->”
which denotes that the step evaluates to multidimensional
nodes.

3.1.4 MXPath predicates

As in conventional XPath, in MXPath a predicate con-
sists of an expression, called a MXPath predicate expression,
enclosed in square brackets. A predicate serves to filter a
sequence, retaining some items and discarding others. Mul-
tiple predicates are allowed in MXPath expressions. In the
case of multiple adjacent predicates, the predicates are ap-
plied from left to right, and the result of applying each predi-
cate serves as the input sequence for the following predicate.
For each item in the input sequence, the predicate expres-
sion is evaluated and a truth value is returned. The items for
which the truth value of the predicate is true are retained,
while those for which the predicate evaluates to false are
discarded.

The operators (logical operators, comparison operators,
etc.) used in MXPath predicates are those used in conven-
tional XPath. MXPath predicates may also contain MX-
Path expression bodies in the same way as XPath expres-
sions are allowed in conventional XPath predicates. Besides
these syntactic constructs, ezplicit context qualifiers (or ec
qualifiers) are also used in MXPath predicates. An explicit
context qualifier (ec qualifier) may be applied in every step
of a MXPath expression and filter the resulting nodes of
the corresponding step according to their explicit context.
Explicit context qualifiers are of the form:

ec() comparison_operator context_specifier

The function ec() returns the explicit context of the cur-
rent node. Note that, the predicates assigned to a context
MXPath step are applied to the context nodes obtained from
the evaluation of this step. In the same way, if a MXPath
step is a multidimensional MXPath step, predicates are ap-
plied to the resulting multidimensional nodes.

3.2 MXPath examples

In this section we present a number of MXPath exam-
ples and explain their evaluation on the MXML graph of
Figure 1.

EXAMPLE 4. Retrieving context nodes according to their
inherited context coverage.

Query: What is the acceleration of a car produced in Japan
and sold in USA?

MXPath: [icc()="factory=Japan,market=USA"],

/child: :car/child: :performance/child: :acceleration

In this example, the [icc()="factory=Japan,market=USA"]
is the inherited coverage qualifier (icc qualifier) of the MX-
Path expression. The expression that follows is the MXPath
expression body which, in the example, is syntactically sim-
ilar to a conventional XPath expression. However, there is
difference as in MXPath a step describes paths that include
two MXML nodes, one multidimensional node followed by a
corresponding context node. Recall that, in MXML context
elements have the same element name as the corresponding
multidimensional element.

Consider for example the second MXPath step of our ex-
ample, that is the step child::performance, and suppose
that the current node on which this step is evaluated is node
1 (which has been obtained by evaluated the previous step).
This step looks for children of node 1, crosses the multidi-
menstonal node labeled “performance” with ID 36 and re-
turns the context nodes labeled “performance” with IDs 37
and 46. In the same way, the step child::acceleration
evaluates to the context nodes labeled “acceleration”. In
particular, when the step is evaluated by considering as cur-
rent node the node with ID 37, we get the nodes with IDs
42 and 44. When the same step is evaluated by considering
as current node the node with ID 46, we get the node with
ID 48. Now, the icc qualifier is applied. As the inherited
context coverage of the results must be equal to the context
[factory=Japan,market=USA], the nodes with IDs 42 and
46 are discarded and thus the final result is the node with ID
m

Note that, the abbreviated form of the above MXPath ex-
pression is the following:

[icc(D="factory=Japan,market=USA"],
/car/performance/acceleration

EXAMPLE 5. Retrieving context nodes according to their
inherited context coverage.
Query: What is the power of the cars which are produced
in Italy and sold either in USA or in Europe?
MXPath:
[iccO="factory=Italy, market in {USA, Europel}"],

/child: :car/child: :engine/child— >power

In this case, we follow the same navigation rules as in Ez-
ample 4, but this time the MXPath step child— >power is
a multidimensional one and thus it returns the multidimen-
sional nodes labelled “power” with IDs 22 and 31. Then,
because of the application of the inherited coverage qualifier

[icc(O="factory=Italy, market in {USA, Europel}"], node

22 is discarded and we get node 31 as the result.

EXAMPLE 6. Retrieving context nodes according to their
explicit context.

Query: What is the acceleration of the cars which are sold
in Europe?
MXPath:
[icc(O>="-"], /child::car/child: :performance
/child: :acceleration[ec()>="market=Europe"]

In above example, the icc qualifier denotes that the icc of the
results must be context superset of the empty context [-]. As
this is always true, in this case the icc qualifier can be omit-
ted and is implied. The predicate [ec ()>="market=Europe"]

is an explicit context qualifier. This qualifier states that the
set of worlds expressed by the explicit context of the “accel-
eration” context nodes must be superset of the set of worlds
expressed by the context specifier [market=Europe]. Thus,
although the evaluation of the step child: :acceleration re-
turns the nodes 42, 44 and 48, the final result, after applying
the explicit context qualifier, contains only the context nodes
42 and 48.

EXAMPLE 7. Retrieving multidimensional nodes accord-
ing to their explicit context.

Query: What is the power of a car that is produced in
Japan?
MXPath:
/child: :car/child: :enginelec()="factory=Japan"]
/child— >power

The query of the above example returns multidimensional
nodes labeled “power” as explained in Example 5. Notice that
because of the predicate [ec()="factory=Japan"] the MX-
Path step child::enginelec()="factory=Japan"] returns
the context node with ID 18. So, the final result of the query
is node 22.

EXAMPLE 8. Retrieving value nodes.

Query: From those cars that are produced in Italy, what is
the top speed of the cars which are sold either in Europe or
in USA?
MXPath: [icc()<="market in {Europe,USA}"],
/child: :car/child: :performance
[ecD="factory=Italy"]/child::top_speed

In this example, both types of qualifiers are used. Using the
same navigation rules explained in the examples presented
above, the result of this query is the nodes with IDs 51 and
53.

EXAMPLE 9. Using an MXPath expression in a predicate.

Query: Which is the top speed of the cars available in the
market of USA whose acceleration is “0-100 in 5 sec”?

MXPath: [icc()>="-"],
/child: :car/child: :performance[child: :acceleration
[ec()<="market=USA"] ="0-100 in 5 sec"]
/child: :top_speed

Notice that in the MXPath expression body of the above ex-
ample, a whole MXPath expression body is included in the
predicate of the second MXPath step. The predicate is

[child: :acceleration[ec() <= "market = USA"] = "0O-
100 in 5 sec"]

and 1is responsible for retaining the nodes (if such nodes
exist) with element name performance which have a child
element named acceleration whose value for the market of
USA is “0-100 in 5 sec”. It is easy to see that by evaluating
the above MXPath expression we finally get the node whose
ID is 39.

4. REDUCTION OF MXML DOCUMENTS
AND THE SEMANTICS OF MXPATH

In this section we discuss semantic issues of MXPath. In
particular, we show how the semantics of (a fragment of)
MXPath can be expressed with respect to (the conventional)

XPath. For this, we will use the notion of reduction for
MXML documents proposed in [16].

4.1 Reduction of MXML to XML

Reduction is a procedure which, given a world w, and a
MXML document (MXML-graph) G, produces a conven-
tional XML document (XML-Graph) G’ which is the hold-
ing instance of G under w. The XML document obtained
by applying the reduction procedure on G with respect to
w is denoted by R(w, Q).

The intuition behind reduction is that, given a world w,
we can specialize the MXML document G by eliminating its
parts that do not hold under the world w (in other words, by
eliminating the parts of the document for which w does not
belong to the worlds specified by their inherited context cov-
erage) obtaining in this way a conventional XML document
G’ which holds under w. The reduction procedure consists
of the following steps:

1. Eliminate all subtrees of G for which the world w does
not belong to the worlds specified by the inherited con-
text coverage of their roots.

2. Eliminate each element context edge (resp. attribute
context edge) (p, C,q) of the graph G, obtained from
G in Step 1, as follows: Let (s,p) be the element edge
(resp. attribute edge) leading to the node p. Then:

(a) Add a new element edge (resp. attribute edge)
(s,q), and

(b) discurd the edges (p, C, q) and (s,p) and the node
.

The XML document (XML-graph) G’, obtained after
applying Step 2, is the result of the reduction proce-
dure applied on the MXML document G with respect
to the world w.

ExAMPLE 10. Consider the MXML document of Exam-
ple 1 and the worldw = {(factory, Japan), (market, USA)}.
By applying the reduction procedure described above to this
MXML document we obtain the following (conventional) XML
document:

<car type="sport">
<designer>groupo Bertone</designer>
<engine>
<capacity>1.81t</capacity>
<power>200hp</power>
</engine>
<performance>
<top_speed>250km/h</top_speed>
<acceleration>0-100 in 5sec</acceleration>
</performance>
</car>

The XML-graph of the above XML document is shown in
Figure 3.

Notice that, by applying the reduction procedure, each
MXML document can be reduced to a number of XML doc-
uments, each of them holding under a single world. We can
thus consider an MXML document as a compact represen-
tation of a set of (conventional) XML documents. However,
an MXML document is more than a set of XML documents
as it relates the various components of these documents (as
being different versions of the same object).

4.2 Semantic relation between MXPath and
XPath

In this subsection we investigate the relation between the
MXPath and (conventional) XPath and demonstrate how
we can establish a semantic relation between MXPath and
XPath. The following example gives some intuition about
the content of the remaining subsection:

ExAmMPLE 11. In Ezample 4, we have seen the following
MXPath query:

[iccO="factory=Japan,market=USA"],
/child: :car/child: :performance/child: :acceleration

and showed that the result of evaluating this query is the
node with ID 44. Notice that the nodes obtained by evalu-
ating the MXPath expression body of the query (which are
the nodes with IDs 42, 44 and 46) are filtered using the
inherited context qualifier in order to obtain the final re-
sult. Observing the inherited coverage qualifier, we can see
that the nodes retained in the final results are those nodes
whose inherited context qualifier consists of the world w =
{(factory, Japan), (market,USA)}. Notice now that in Ez-
ample 10, we have applied the reduction procedure to the
original MXML document with respect to the same world w
and we have obtained a conventional XML document (whose
graphical representation is shown in Figure 3) holding un-
der the world w. It is interesting to observe that by treating
the MXPath expression body of our MXPath expression as
a conventional XPath expressiont and applying that XPath
expression on the document (XML-graph) obtained by the
reduction procedure, then we get the same result (i.e. the
node with ID 44) as with the original MXPath query.

Based on the above example an interesting question arizes:

Can we use the conventional XML documents
obtained by applying the reduction procedure on
an MXML document G together with a conven-
tional XPath query obtained from the original
MXPath query F, in order to define the mean-
ing of applying the query E on the document G?

The following lemma answers this question by presented
how we can define the semantics of (a restrictive form) of
MXPath queries. In particular, the lemma establishes a se-
mantic relation for a subclass of MXPath queries, namely
for queries whose MXPath expression body does not con-
tain neither explicit context qualifiers nor Multidimensional
MXpath Steps.

In the results presented below we use the following nota-
tion: Let E be an MXPath expression (resp. XPath expres-
sion) and G be a MXML document (resp. XML document).
Then by E(G) we denote the set of the node IDs returned by
evaluating F over G. By U we denote the universal context
(i.e. the set of all possible worlds) of the MXML document
G. Also, W(C) denotes the set of the worlds specified by
the context specifier C. Finally, recall that R(w, G) denotes
the XML document obtained by applying the reduction pro-
cedure on GG with respect to a world w € Ug.

'Notice that, in this specific example, the MXPath expres-
sion body is a syntactically valid conventional XPath ex-
pression. However, in the general case this is not true.

N

car

3
type 37
18 performance

4 / 1 engine
“sport” designer
39
fo top 44
12 capacity 25
1

“groupo
Bertone” 2

“1.81t”

speed accelftion
power
“0-100 in
26 250 5 sec”
“200hp” km/h”

Figure 3: XML-graph obtained by applying reduction to the MXML-graph of Figure 1.

LEMMA 1. Let G be a MXML document and E = (I, P)
be a MXPath query, where I is its inherited coverage quali-
fier and P be its MXPath expression body. Suppose that P
consists only of Context MXPath steps and does not contain
explicit context qualifiers®. Then the following hold:

o If I is of the form [icc() > "-"], then:
E(G) = UG’eSu (P(G)),
where Sy = {R(w, G)|lw € Ua}.
o If I is of the form [icc() >= C|], where C is a context
specifier, then:
E(G) = nc/esc (P(Gl))’
where Sc = {R(w, G)|lw € W(C)}.
o If I is of the form [icc() = C], where C is a context
specifier, then:
E(G) = mc/esc (P(G/)) - UG//gsﬁ(P(G”)):
where S¢ = {R(w, G)|lw € W(C)} and
Se ={R(w,G)lw € Us — W(C)}.
o If I is of the form [icc() <= C], where C is a context
specifier, then:
E(G) = UG’ESC (P(Gl)) - Ucﬂgsé(P(G”)):
where S¢ = {R(w, G)|lw € W(C)} and
Sz = {R(w,G)|w € Us — W(C)}.
o If I is of the form [icc()!=C], where C is a context
specifier, then:
B(G) = Uges,, (P(E) -
(Narese (P(G") =Ugmes_ (P(G™)),

2It is easy to see that in this case P is a syntactically valid
XPath expression.

where Sy = {R(w, G)|w € U} and Sc = {R(w, G)|w €
W(C)} and Sz = {R(w,G)|lw € Ua — W(C)}.

o If I is of the form [icc() > C], where C is a context
specifier, then:

E(G) = (Narese (PE))) N Ugres,, (P(G"),
where S¢ = {R(w, G)|lw € W(C)} and
Se = {R(w,G)lw € Uz — W(C)}.

o If I is of the form [icc() < C], where C is a context
specifier, then:

E(G) = Ugres, (P(G') =Ugres, (P(G"))—
(Narese (P(G) =Ugres, (P(GY)))-

where Sc = {R(w, G)|lw € W(C)} and

Se = {R(w,G)|w € Us — W(C)}.

Notice that the above lemma is based on the assumption
that the nodes of the XML trees obtained by applying the
reduction procedure retain their IDs. One can observe that
anode in an (M)XML tree has a one-to-one correspondence
with the subtree rooted at this node. In this sense, a node
can be considered to represent the (sub)tree rooted of that
node. But then, a (context) node in the MXML tree G rep-
resents a different tree than the tree represented by the same
node in a XML tree G’ obtained by applying reduction to
G. It is however easy to see that, when a MXML query re-
turns a (context) node N, then the occurrences of the same
node N returned by applying the MXPath expression body
to the instances of G as it is specified by the above lemma,
are rooted in XML trees obtained by applying the reduction
procedure to the multidimensional subtree of G rooted at
N. In this sense, both the MXML document and the MX-
Path expression can be seen as compact representations of
a family of XML documents and a family of XPath queries
on them. Furthermore, in order for some of these XPath

queries to be answered, several XML documents should be
examined in parallel.

Besides, the most important (which can also be concluded
by observing the formulas in Lemma 1) is that MXPath
is expressive enough to encode queries that in order to ex-
press the same thing may require an extremely large amount
of XML documents on which we have to pose conventional
XPath queries and then combine the results obtained in this
way.

It is also important to notice that MXPath is in fact more
than a compact way to express what can be expressed by
XPath. Some features of MXPath are inherently multidi-
mensional and can only be explained in relation to MXML.
The most important of these features is the construct for

navigating through or returning multidimensional nodes. Mul-

tidimensional nodes actually act like “containers” of nodes
that deviate from each other in context but are otherwise
similar. Using Multidimensional MXPath steps (that is steps
containing the -> symbol) we can obtain multidimensional
nodes. However, this kind of queries seems difficult to be
expressed in terms of the XML documents obtained by ap-
plying reduction to G.

5. USING MXPATH FOR MANIPULATING
MXML

The definition of MXPath is the first step towards manip-
ulating MXML. The use of MXPath can be threefold:

1. MXPath is necessary for updating MXML. In
[13] we have defined a number of basic change oper-
ations for MXML. Those operations use MXPath ex-
pressions as input in order to specify the affected parts
in the MXML tree.

2. MXPath will be an essential part of a query
language for MXML. XQuery [7] is a language for
querying and manipulating XML documents. XQuery
uses XPath expressions to navigate through elements
in an XML document but adds more functionality to
become a full-fledged query language, supporting for
example variables, joins and construction of results.
Both XQuery and XPath share the same data model
and support the same functions and operators. An ex-
tension of XQuery (Multidimensional XQuery) could
express multidimensional queries over MXML docu-
ments, using MXPath expressions. Such a query lan-
guage would treat context as first class citizen, allow-
ing the expression of context-aware queries.

3. MXPath is useful for transforming MXML. The
Extensible Stylesheet Language (XSLT) [5], a language
for transforming XML documents, makes use of XPath
for selecting elements. In the transformation process,
XSLT uses XPath expressions to define parts of the
source document that should match one or more pre-
defined patterns. When a match is found, XSLT trans-
forms the matching part of the source document into
the result document. XPath expressions are used in
XSLT for a variety of purposes including (a) select-
ing nodes for processing, (b) specifying conditions for
different ways of processing a node or (c) generating
text to be inserted in the result tree. XSLT could be

extended through MXPath (Multidimensional XSLT')
so as to be capable of expressing transformations of
MXML documents.

6. DISCUSSION AND MOTIVATION FOR FU-
TURE WORK

Multidimensional XML (MXML) is an extension of XML
suitable for representing data that assume different facets,
having different value and structure, under different con-
texts. In this paper we investigated the problem of navigat-
ing and querying MXML documents. For this we propose
a Multidimensional extension of XPath, called Multidimen-
sional XPath (or MXPath).

The present work is part of a framework aiming at stor-
ing, querying and updating MXML documents using rela-
tional databases. Approaches for storing MXML in rela-
tional databases, where the nodes and edges of MXML-
graphs are mapped to appropriately chosen relational table,
are presented in [12]. In [13, 14], we showed expressions
belonging to a fragment of MXPath are necessary in order
to define a set of basic change operations at the level of the
MXML-graph. Those update operations can be used for any
possible update of a MXML document.

Our future work on this subject will focus on (a) the def-
inition of algorithms for the translation of MXPath queries
to SQL queries so as to be evaluated on MXML documents
stored in relational databases, (b) the incorporation of MX-
Path into query languages such as XQuery and XSLT, and
(c) the formal definition of the semantics of the complete
MXPath.

7. REFERENCES

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann Publishers, 2000.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The Lorel Query Language for
Semistructured Data. International Journal on Digital
Libraries, 1(1):68-88, 1997.

[3] T. Amagasa, M. Yoshikawa, and S. Uemura. A Data
Model for Temporal XML Documents. In Database
and Expert Systems Applications, 11th International
Conference, DEXA 2000, London, UK, September 4-8,
2000, Proceedings, volume 1873 of Lecture Notes in
Computer Science, pages 334—344. Springer, 2000.

[4] A. Bonifati and S. Ceri. Comparative Analysis of Five
XML Query Languages. SIGMOD Record,
29(1):68-79, 2000.

[5] W. W. W. CONSORTIUM. XSL Transformations
(XSLT). http://www.w3.org/TR/xslt, November
1999.

[6] W. W. W. CONSORTIUM. Extensible Markup
Language (XML). http://www.w3.org/XML, May
2007.

[7] W. W. W. CONSORTIUM. Extensible Markup
Language (XML). http://www.w3.org/TR/xquery/,
January 2007.

[8] W. W. W. CONSORTIUM. XML Path Language
(XPath) 2.0. http://www.w3.org/TR/xpath20/,
January 2007.

[9]

[11]

[12]

[13]

[18]

C. Doulkeridis, E. Valavanis, and M. Vazirgiannis.
Towards a context-aware service directory. In

B. Benatallah and M.-C. Shan, editors, Technologies
for E-Services, 4th International Workshop, TES
2003, Berlin, Germany, September 8, 2003,
Proceedings, pages 54-65, 2003.

C. Doulkeridis and M. Vazirgiannis. Querying and
updating a context-aware service directory in mobile
environments. In 2004 IEEE/WIC/ACM International
Conference on Web Intelligence (WI 2004), 20-24
September 2004, Beijing, China, pages 562—565. IEEE
Computer Society, 2004.

C. E. Dyreson. Observing Transaction-Time Semantics
with TTXPath. In Proceedings of the Second
International Conference on Web Information Systems
Engineering (WISE2001), pages 193-202, 2001.

N. Fousteris, M. Gergatsoulis, and Y. Stavrakas.
Storing Multidimensional XML documents in
Relational Databases. In Database and Ezpert Systems
Applications, 18th International Conference on
Database and Ezpert Systems Applications, DEXA
2007 Regensburg, Germany 3-7 September 2007, pages
23-33. Springer, 2007.

N. Fousteris, M. Gergatsoulis, and Y. Stavrakas.
Updating Multidimensional XML Documents. In
1WWAS’2007 - The Ninth International Conference on
Information Integration and Web-based Applications
Services, 3-5 December 2007, Jakarta, Indonesia,
pages 257-266, 2007.

N. Fousteris, M. Gergatsoulis, and Y. Stavrakas.
Updating multidimensional XML documents.
International Journal of Web Information Systems,
4(2):142-164, 2008.

M. Gergatsoulis and Y. Stavrakas. Representing
Changes in XML Documents using Dimensions. In

Z. Bellahsene, A. B. Chaudhri, E. Rahm, M. Rys, and
R. Unland, editors, Database and XML Technologies,
1st International XML Database Symposium, XSym’
03, Berlin, Germany, September 2003, Proceedings,
Lecture Notes in Computer Science (LNCS), Vol.
2824, pages 208-222. Springer-Verlag, 2003.

M. Gergatsoulis, Y. Stavrakas, and D. Karteris.
Incorporating Dimensions in XML and DTD. In
Database and Ezpert Systems Applications, 12th
International Conference, DEXA 2001 Munich,
Germany, September 3-5, 2001, Proceedings, volume
2113 of Lecture Notes in Computer Science, pages
646—656. Springer, 2001.

M. Gergatsoulis, Y. Stavrakas, D. Karteris,

A. Mouzaki, and D. Sterpis. A Web-Based System for
Handling Multidimensional Information through
MXML. In Advances in Databases and Information
Systems, 5th Fast European Conference, ADBIS 2001,
Vilnius, Lithuania, September 25-28, 2001,
Proceedings, volume 2151 of Lecture Notes in
Computer Science, pages 352-365. Springer, 2001.

S. Groppe and S. Bottcher. Query Reformulation for
the XML standards XPath, XQuery and XSLT. In
Berliner XML Tage 2004, 11.-13. October 2004 in
Berlin, pages 53—-64, 2004.

10

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

M. C. Norrie and A. Palinginis. Versions for Context
Dependent Information Services. In R. Meersman,

7. Tari, and C. Schmidt, editors, 11th International
Conference on Cooperative Information Systems
(CoopIS’ 03), Catania-Sicily, Italy, November 2003,
Lecture Notes in Computer Science (LNCS), Vol.
2888, pages 503-515. Springer-Verlag, 2003.

J. M. Pérez, M. J. A. Cabo, and R. B. Llavori. XRL:
A XML-Based Query Language for Advanced Services
in Digital Libraries. In Database and Expert Systems
Applications, 13th International Conference, DEXA
2002, Aiz-en-Provence, France, September 2-6, 2002,
Proceedings, pages 300-309, 2002.

N. Shinagawa, H. Kitagawa, and Y. Ishikawa. X2QL:
An eXtensible XML Query Language Supporting
User-Defined Foreign Functions. In Current Issues in
Databases and Information Systems, East-European
Conference on Advances in Databases and Information
Systems Held Jointly with International Conference on
Database Systems for Advanced Applications,
ADBIS-DASFAA 2000, Prague, Czech Republic,
September 5-8, 2000, Proceedings, pages 251-264,
2000.

Y. Stavrakas. Multidimensional Semistructured Data:
Representing and Querying Context-Dependent
Multifacet Information Information on the Web. PhD
thesis, Department of Electrical and Computer
Engineering, National Technical University of Athens,
June 2003.

Y. Stavrakas and M. Gergatsoulis. Multidimensional
Semistructured Data: Representing
Context-Dependent Information on the Web. In A. B.
Pidduck, J. Mylopoulos, C. Woo, and T. Oszu,
editors, Advanced Information Systems Engineering,
14th International Conference (CAiSE’02), Toronto,
Ontario, Canada, May 2002. Proceedings., Lecture
Notes in Computer Science (LNCS), Vol. 2348, pages
183-199. Springer-Verlag, 2002.

Y. Stavrakas, M. Gergatsoulis, C. Doulkeridis, and
V. Zafeiris. Representing and Querying Histories of
Semistructured Databases Using Multidimensional
OEM. Information Systems, 29(6):461-482, 2004.

M. Yoshikawa, T. Amagasa, T. Shimura, and

S. Uemura. XRel: a path-based approach to storage
and retrieval of XML documents using relational
databases. ACM Transactions on Internet Technology,
1(1):110-141, 2001.

S. Zhang and C. E. Dyreson. Adding Valid Time to
XPath. In Databases in Networked Information
Systems, Second International Workshop, DNIS 2002,
Aizu, Japan, December 16-18, 2002, Proceedings,
pages 29-42, 2002.

