
UPDATING MULTIDIMENSIONAL XML

DOCUMENTS 1)

Nikolaos Fousteris, Manolis Gergatsoulis, Yannis Stavrakas

Department of Archive and Library Science, Ionian University,

Ioannou Theotoki 72, 49100 Corfu, Greece.

{nfouster, manolis}@ionio.gr, ys@dblab.ntua.gr

Abstract:

In Web applications it is often required to manipulate information of semistructured nature,

which may present variations according to different circumstances. Multidimensional XML

(MXML) is an extension of XML suitable for representing data that assume different facets,

having different value and/or structure, under different contexts. In this paper, we consider the

problem of updating MXML. Updating must take into account the additional features of MXML

compared to XML. Those features stem from the incorporation of context into MXML. We

introduce six basic update operations, which are suitable for any possible change in MXML.

1 Introduction

Multidimensional XML (MXML) [5] is an extension of XML which allows context specifiers

to qualify element and attribute values, and specify the contexts under which the document

components have meaning. MXML is therefore suitable for representing data that assume

different facets, having different value or structure, under different contexts. Contexts are

specified by giving values to one or more user defined dimensions. In previous work [4], the

problem of storing MXML in a Relational Database (RDB) has been studied. This problem

has been extensively studied in the past [3, 7, 10] for XML. However, the problem of updating

MXML documents has not been studied yet although the problem of updating conventional

XML stored in relational databases has also been studied in the past [1, 2]. The goal of our

approach is to develop a similar framework for MXML. The main contribution of the present

paper is that we define a set of six basic change operations for updating MXML documents.

We give algorithmic definitions of the operations in a way independent of any specific storage

approach for MXML. Moreover, we discuss in detail the effect of those operations on MXML

1)This research was partially co-funded by the European Social Fund (75%) and National Resources (25%) -
Operational Program for Educational and Vocational Training (EPEAEK II) and particularly by the Research
Program “PYTHAGORAS II”.

documents and give relevant examples. We also give an overview of an extension of XPath,

called Multidimensional XPath (MXPath), which is used here to specify the nodes of the

MXML tree on which the update operations are applied.

2 Preliminaries

2.1 Mutidimensional XML (MXML)

In Mutidimensional XML (MXML), data assume different facets, having different value or

structure, under different contexts[5, 6]. Contexts are described through syntactic constructs

called context specifiers and are used to specify sets of worlds by imposing constraints on

the values that a set of user defined dimensions can take. A world, which represents an

environment under which data obtain meaning, is determined by assigning a single value to

every dimension, taken from the domain of the dimension. The elements/attributes that have

different facets under different contexts are called multidimensional elements/attributes while

their facets are called context elements/attributes, and are accompanied with a corresponding

context specifier denoting the set of worlds under which each facet is the holding one. MXML

documents can be represented in a node-based graphical model called MXML-graph [4]. The

syntax of MXML is shown in Example 2.1.

Example 2.1. The MXML document shown below represents a book in a book store. Two
dimensions are used in the document. The dimension edition whose domain is {greek,
english}, and the dimension customer type whose domain is {student, library}.

<book isbn=[edition=english]"0-13-110362-8"[/]

[edition=greek]"0-13-110370-9"[/]>

<title>The C programming language</title>

<authors>

<author>Brian W. Kernighan</author>

<author>Dennis M. Ritchie</author>

</authors>

<@publisher>

[edition = english] <publisher>Prentice Hall</publisher>[/]

[edition = greek] <publisher>Klidarithmos</publisher>[/]

</@publisher>

<@translator>

[edition = greek] <translator>Thomas Moraitis</translator>[/]

</@translator>

<@price>

[edition=english]<price>15</price>[/]

[edition=greek,customer_type=student]<price>9</price>[/]

[edition=greek,customer_type=library]<price>12</price>[/]

</@price>

<@cover>

[edition=english]<cover><material>leather</material></cover>[/]

[edition=greek]

<cover>

<material>paper</material>

<@picture>

[customer_type=student]<picture>student.bmp</picture>[/]

[customer_type=library]<picture>library.bmp</picture>[/]

</@picture>

</cover>

[/]

</@cover>

</book>

Notice that the name of a multidimensional elements is preceded by the symbol @ while the

corresponding context elements have the same element name but without the symbol @. The

MXML-graph representing the MXML document presented above is shown in Fig. 1. For

saving space, obvious abbreviations for dimension names and values are used. IDs assigned

to nodes are used in this paper to facilitate the reference to the nodes. However, these IDs

are also used when the MXML tree is stored in relational tables as explained in [4].

���� �
�����	

���

	���	���

����	� �����

������� �����

	�����

�����	�
����	���
���

��������
��������

���� ���	�� ���

��	��	���

������

�!"#

�!$�

���%�

�&�

���%�

%�'��

��	����� ��	����
�������� ��
��

����	�(��
��

��%����

��%����

�)*!+*!!
)+,)*&�

�)*!+*!!
)+-$*.�

��	��	���

����

	����	
	����	

��� �

/
0

1

2

3 3

1

/

1

/

/

/

1

1

����

2

2
2 2

/
/

1
1

2

/

1

2

//

/

1

2

	����	

/

1

2

/

/

1

1

2

	����	

2

/

/

/

����

������ ������

��������

���� ����

	������

	�����

��%����

�%4
�(�����

�%4
�(�������

%�'��

%�'��
������ ������

1 1

1

���%�

������

������5
%4

�(�����

������5
%4

�(�������

������ ������

���%�
�

�

�

�

� �

2 6789:;:6<=>:?=@8 <8<6<=9 =?;<

2

<8<6<=9A@99B:C79< D?=9<E9 <;F<
<8<6<=9A@99B:C79<AG@87< <;F<

H G@87< =?;<

0

6789:;:6<=>:?=@8 @99B:C79< =?;<0

IJKLMN OPLNQ
B??9 =?;<

	������

	�����
	�����

)

!
$

+

R

"

-

,

.

&
!)

!!

!$

!+

!R

!"

!-

!,

!.

!&

$)

$!

$$

$+

$R

$"

$-

$,

$.

$&

+)

+!

+$

++

+R

+"

+-

+,

+.

+&

R)

R!

R$

R+

RR

R"

R-

D?=9<E9 @99 B:C79< =?;<

D?=9<E9 <8<6<=9 =?;<

@99B:C79< B<S<B<=D< <;F<

Figure 1: Graphical representation of MXML (MXML graph)

2.2 Properties of contexts

Context specifiers qualifying context edges give the explicit contexts of the nodes to which the

edges lead. The explicit context of all the other nodes is by definition the universal context

represented by [], denoting the set of all possible worlds. When elements and attributes are

combined to form a MXML document, their explicit contexts do not alone determine the

worlds under which each element/attribute holds, since when an element/attribute e2 is part

of another element e1, then e2 have substance only under the worlds that e1 has substance.

This is conceived as if the context of e1 is inherited to e2. The context propagated in that

way is combined with the explicit context of a node to give its inherited context. Formally,

the inherited context ic(q) of a node q is ic(q) = ic(p) ∩c ec(q), where ic(p) is the inherited

context of its parent node p and ∩c is the context intersection defined in [9]. ∩c combines

two context specifiers and computes a new one representing the intersection of the worlds

specified by the original specifiers. The evaluation of the inherited context starts from the

root of the MXML-graph. By definition, the inherited context of the root is the universal

context []. Contexts are not inherited through attribute reference edges. As in conventional

XML, the leaf nodes of MXML-graphs must be value nodes. The inherited context coverage

(icc) of a node further constraints its inherited context, so as to contain only the worlds under

which the node has access to some value node. This property is important for navigation and

querying, but also for the reduction of MXML to XML [6, 4]. The icc(n) of a node n is defined

as follows: if n is a value node then icc(n) = ic(n); else if n is a leaf node but not a value

node then icc(n) = [−]; otherwise icc(n) = icc(n1)∪c icc(n2)∪c ...∪c icc(nk), where n1, . . . , nk

are the child element nodes of n. [−] stands for the empty context specifier which represents

the empty set of worlds. ∪c is the context union operator defined in [9] which combines two

context specifiers and computes a new one representing the union of the worlds specified by

the original context specifiers.

Example 2.2. In Fig. 2 we see a fragment of the MXML graph of Fig. 1 in which it is shown

�����

�����	��
 ������

������� ����

������������

������
�������������� ��������

�

��

�

�

�
��������

�

�

�

�
�

�

�

�
�������� ������

������������������������

�����

�����
��������������

� � � �

��

��

��

��

�

�!

�"

�#

�$

�%

��

��

��

��

&''()*+ &, -*,./012

&''()*+(/02

&''()*+(/0.'3 456* &, -748+.9&:12

&''()*+(/0.'3 456*(9&:2

&''()*+(/0.'3 456*(9&:2
&''()*+(/0.
'3 456*(748+2

&''()*+(/0.'3 456*(748+2

&''()*+(*,2

&''()*+(*,2

&''()*+(*,2

&''()*+(*,2

&''()*+(/02

&''()*+(/02

&''()*+(/02

Figure 2: Representing the Inherited Context Coverage

the value of the inherited context coverage (icc) for every node of the subtree.

3 Multidimensional XPath

Multidimensional XPath (MXPath) is an extension of XPath that uses the inherited context

coverage and the explicit context of MXML to specify navigation patterns over the additional

MXML features. A detailed discussion of MXPath is out of the scope of this paper, however

in this section we provide a brief overview. As an example consider the following query

given in natural language: Find the ISBN of the greek edition of the book with title “The C

Programming Language”. The corresponding MXPath expression is:

[icc()>=‘‘ed=gr’’], /child::book[title=‘‘The C Programming Language’’]/attribute::isbn

The [icc()>=‘‘ed=gr’’] is the icc qualifier, which is the first part of every MXPath, and

denotes a condition for the icc of the result nodes. In this example, we demand that the icc of

the results (returned by the function icc()) is context superset (>=) of the context [ed=gr].

The rest of the syntax in this example is similar to conventional XPath. However, each element

of the form axis::label describes paths that include two MXML nodes, one multidimensional

node and one context node. For example, the attribute::isbn looks for attributes of node

1, crosses the multidimensional node labeled “isbn” with ID 2 and returns the context nodes

labeled “isbn” with IDs 3 and 5. There are two main additional features of MXPath: (a) it

allows conditions on the explicit context of a node, by using the ec qualifier predicate, and (b)

it is possible to use the characters (->) instead of (::) in order to return multidimensional

nodes instead of context nodes. For example, consider the following MXPath:

[icc()>=‘‘-’’], /child::book/child::cover[ec()>=‘‘ed=en’’]/child− >material

It returns the “material” multidimensional nodes of covers of the english edition. On the tree

of Fig. 1, it will evaluate to node with ID 35. Note that [icc()>=‘‘-’’] denotes that the

inherited context coverage of the results must be context superset of the empty context [-]. As

this is always true, in this case the inherited coverage qualifier may be omitted and is implied.

The predicate [ec()>=‘‘ed=en’’] states that the explicit context of “cover” context nodes

must be superset of [ed=en], thus leading the navigation to node 34. Then, child->material

evaluates to the multidimensional nodes labeled “material” which are children of node 34.

As in XPath, there are shorthands in MXPath. The above MXPath can take the form:

/book/cover[ec()>=‘‘ed=en’’]/− >material

4 MXML Update Operations

In this section we define a set of basic update operations namely delete, insert, update label

update context, update value and replace that are used to modify MXML documents (MXML

graphs). These operations can be combined to perform any possible change on a document,

and when the apply on a well-formed MXML document, the document obtained is well-formed.

a) Deleting subtrees: The operation delete(P) is used to delete subtrees rooted at specific
(context or multidimensional) nodes specified by the MXPath P . The operation is defined by:

delete(P):

Input: P: MXPath expression.

1. Let NP be the set of nodes returned by evaluating P.

2. For each n ∈ NP do

- Delete the subtree rooted at n and the edge leading to n.

- Recalculate the iccs of n and its ancestors in the tree.

- Delete the subtree rooted at each node m for which icc(m) = [−] as well as the edges leading to m.

Example 4.1. The tree in Fig. 3(b) is obtained by deleting the subtree rooted at the node

����������	
�

���������	
�

�����

�����

�

�

�

�

�

�����

���
��
� ����

���
��
� ������

��

��

��

��

��

������
���� ��

����������	
�

�����

�

�

�

�����

���
��
� ������

��

��

���
�
���

	������

�

�

�

�
	������

�� ��

� �

�!

�"

�#

�$

�
�� ��

�!

%�& %�&

�
�
���

	������
�

�

�
	������

� �

�"

�#

�$

Figure 3: Deleting a node

45 from the tree in Fig. 3(a) (which is a fragment of the tree in Fig. 1). By recalculating

the icc’s of the nodes from the node 42 to the root we get icc(42)=[ed=gr,c type=stud],

icc(38)=[ed=gr], icc(33)=[ed in {gr,en}] and icc(1)=[]. Notice that the MXPath P

returning node 45 may be: /book/cover[ec()=‘‘ed=gr’’]/picture[ec()=‘‘c type=lib’’]

b) Inserting Subtrees: Inserting a (well-formed) tree T at specific points of the MXML
tree, specified by an MXPath expression P , is done through the operation insert(P, T):

insert(P, T):

Input: P: MXPath expression.

T: A well-formed MXML tree.

1. Let NP be the set of nodes returned by evaluating P.

2. For each n ∈ NP do

If n and root(T) are multidimensional nodes and label(n) = label(root(T)) then

- Let Cn be the set of context specifiers of all context edges departing from n.

- Let CT be the set of context specifiers of all context edges departing from the root of T .

- If Cn ∪ CT is a context deterministic set of context specifiers then

- Hang T on the node n (unify n with the root of T).

- Recalculate the icc’s of all ancestors and descendants of n in the resulted tree.

else If n and root(T) are context nodes and label(n) = label(root(T)) then

- Hang T on the node n (unify n with the root of T).

- Recalculate the iccs of n and all its ancestors and descendants in the resulted tree.

3. Delete the subtree rooted at each node m for which icc(m) = [−] as well as the edges leading to m.

Notice that: (a) Insertion applies only to nodes that are of the same type and have the same

label with the root node of T . (b) If the root of T is multidimensional, the algorithm ensures

that the tree obtained is context deterministic. (c) If P returns multiple nodes, the insertion

of T is applied for each node separately. The sequence of the nodes does not play any role.

Example 4.2. The tree in Fig. 4(c) is obtained by inserting the tree T shown in Fig. 4(b)

at the node 34 of the tree in Fig. 4(a) (which is a fragment of the tree in Fig. 1). By

�����

�����	��

��������

�

��������

� �

��

��

��

��

�����

�������	����

�������

�

�������

������ �
�� �	�
���� ��

�����

�����	��

��������

�

��������

� �

��

��

��

��
�������	����

�������

�

�������

��

�

�!

"#$ "%$ "&$

��'�(��)����� ��'�(��)�����

Figure 4: Inserting a subtree

recalculating the icc’s of the nodes we get icc(49)=icc(48)=icc(47) =[ed=en,c type=stud]

and icc(34)=[ed=en]. Note that P is the MXPath: /book/cover[ec()=‘‘ed=en’’].

c) Updating Label: The following operation is used to update the label of the nodes:

update label(P, L):

Input: P: MXPath expression.

L: A node label.

1. Let NP be the set of nodes returned by evaluating P.

2. For each multidimensional node n ∈ NP do

- Replace the label of n by L.

- Replace the label of each child context node of n by L.

Note that update label applies only to multidimensional nodes. This is not a restriction when

the MXML tree is in canonical form [8]. Besides, it prevents inconsistent situations in which

a child context element has different label from its parent multidimensional element.

Example 4.3. In Fig. 5 we see how update label operation applies to node 42 and changes

the label picture of node 42 (and of its child context nodes 43 and 45), to the new label

image. The argument P is: /child::book/child::cover[ec()=‘‘ed=gr’’]/child->picture

d) Updating Context: The operation update context(P, E) is used to update the explicit
context of the nodes returned by evaluating the MXPath expression P . E is a context expres-
sion which specifies, through the use of operations on contexts (e.g. context union, context

������
����� �	

��� ��

�����
������

������������

�������
�������

�

�
�

�

�

�������

������� �����
��� ���� ������

��

��

��

��

��

������

��������

�

�

�

�
��������

�� ��

� �

�!

�"

�#

�$

%&'

�����
������

������������

���(�
���(�

�

�
�

�

�

���(�

������� �����
������� ������

��

��

��

��

��

�
�� ��

�!

%)'

������

��������
�

�

�
��������

� �

�"

�#

�$

Figure 5: Updating label

intersection etc.), how the new explicit contexts will be constructed. For space saving we will
not refer in detail to the syntax of context expressions. This operation is defined as follows:

update context(P, E):

Input: P: MXPath expression.

E: A context expression.

1. Let NP be the set of nodes returned by evaluating P .

2. Discard all non-context nodes from NP . Let M be a partition of NP

such that each member of the partition consists of all nodes in NP which are siblings.

3. For each m ∈ M do

- Collect in a set Sm all explicit contexts of the nodes in m

and in S the explicit contexts of all siblings of the nodes in m which are not in m.

- Let SE
m be the set of context specifiers obtained by applying E to the elements of Sm.

- If SE
m ∪ S is a context deterministic set of context specifiers then

- Replace the explicit context of each node in m by the corresponding element of SE
m.

- Recalculate the iccs of all nodes in m and all their ancestors and descendants in the resulted tree.

4. Delete the subtree rooted at each node n for which icc(n) = [−] as well as the edges leading to n.

The update context operation applies only to context element/attribute nodes as these nodes

possess a (user defined) explicit context. Note that when the evaluation of P returns two or

more context nodes which are all children of the same multidimensional node, these nodes are

updated simultaneously because the final tree must be context deterministic.

Example 4.4. The tree in Fig. 6(b) is obtained by updating the context of the node 45 in

the tree of Fig. 6(a) (which is a fragment of the tree in Fig. 1). The MXPath expression P is:

/child::book/child::cover[ec()=‘‘ed=gr’’]/child::picture[ec()=‘‘c type=lib’’]

The context expression E = [+(c type=museum)] adds “museum” to the values of the di-

mension “c type” to form the new explicit context of node 45 which becomes [c type in

{lib,museum}]. Recalculating the iccs we get icc(46)=icc(45)=[c type in {lib,museum},
ed=gr] and icc(42)=[ed=gr,c type in {lib,stud,museum}]. Note that, if the expression

E is E=[+(c type=stud)], we can not apply the context update because the resulted tree is not

context deterministic (as ec(43)=[c type=stud] and ec(45)=[c type in {lib,stud}]).

������
�����	� �

���� ��

� ����������������

��� ���
�������� �����

� !�"�"������

�!���"�
�!���"�

#

#
#

$
$

�!���"�
%������ � !�&

%������ �����&

�'

��

��

�(

�������������
� !�"�"������

�!���"�
�!���"�

#

#
#

$
)

�!���"�
%������ !�

* !�+������,&
%������ �����&

�'

��

��

�(

�- �-

Figure 6: Updating the context of a node

e) Updating Values: The operation update value(P, C) replaces the value of the leaf nodes

specified by the MXPath expression P , by a new value obtained by evaluating the value

expression C. This operation is simple and its formal definition is omitted for space reasons.

f) Replacing Subtrees: The operation replace(P, T), replaces the subtrees rooted at the
(context or multidimensional) nodes returned by evaluating P , by the MXML tree T . The
root nodes of the replaced subtrees must match in type and in label with the root node of T .

replace(P, T):

Input: P: MXPath expression.

T: A well-formed MXML tree.

1. Let NP be the set of nodes returned by evaluating P .

2. For each n ∈ NP do

If n and root(T) are nodes of the same type (context or multidimensional) and

label(n) = label(root(T)) then

- Replace the subtree with root node n with the subtree T .

- Recalculate the iccs of n and all its ancestors and descendants in the resulted tree.

3. Delete the subtree rooted at each node m for which icc(m) = [−] as well as the edges leading to m.

Example 4.5. In Fig. 7 we see the tree obtained (see Fig. 7(c)) by replacing the tree rooted at

node 42 (see Fig. 7(a) which is a fragment of the MXML graph of Fig. 1) by the tree shown in

Fig. 7(b). By recalculating the icc’s we get icc(48)=icc(47)=icc(42)=icc(38)=[ed=gr].

����������	
�

���������	
�

�����

�����

�

�
�

�

�

�����

�����
� ����
�����
� ������

��

��

��

��

��

�
�
���

	������

�

�

�

�
	������

�����

� �

��

�

�!

�"

#$%

�
�����

��

�
�������	
�

�����
�

�

�

�����

� �

��

�
�������	
�

�����
�

�

�

�����

� �

#&% #'%

(�
����
) �* + ��
�*� ����

��

�,

��
�
�
���

	������
�

�

�
	������

� �

�

�!

�"

Figure 7: Replacing a subtree

5 Conclusions and Future Work

In this paper we investigated the problem of updating MXML documents and presented a

set of basic change operations which can be used for any possible update of the document.

The present work is part of a framework aiming at storing, querying and updating MXML

documents using relational databases. Approaches for storing MXML in relational databases,

where the nodes and edges of MXML-graphs are mapped to appropriately chosen relational

table, are presented in [4]. In both storing approaches presented in [4], extra tables are

employed to store the explicit context and the inherited context coverage of each node. The

target of our future work is twofold: (a) to see how the proposed update operations defined at

the level of MXML-graph can be mapped to update operations on the relational tables which

store the MXML data, and (b) to formally define MXPath, and translate MXPath expressions

to equivalent SQL queries.

References

[1] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML View Updates to Relational View
Updates: old solutions to a new problem. In Proc. of VLDB’04, pp. 276–287. Morgan Kaufmann, 2004.

[2] Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser. On the updatability of XML views
over relational databases. In Int. Workshop on Web and Databases, pp. 31–36, 2003.

[3] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing Semistructured Data with STORED. In SIGMOD
1999, Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 431–442. ACM Press, 1999.

[4] N. Fousteris, M. Gergatsoulis, and Y. Stavrakas. Storing Multidimensional XML documents in Relational
Databases, In Proc. of DEXA’07, pp. 23–33. Springer, 2007.

[5] M. Gergatsoulis, Y. Stavrakas, and D. Karteris. Incorporating Dimensions in XML and DTD. In Proc.
of DEXA’01, pp. 646–656. Springer, 2001.

[6] M. Gergatsoulis, Y. Stavrakas, D. Karteris, A. Mouzaki, and D. Sterpis. A Web-Based System for
Handling Multidimensional Information through MXML. In Proc. of ADBIS’01, pp. 352–365. Springer,
2001.

[7] J. Shanmugasundaram, E. J. Shekita, J. Kiernan, R. Krishnamurthy, S. Viglas, J. F. Naughton, and
I. Tatarinov. A General Technique for Querying XML Documents using a Relational Database System.
SIGMOD Record, 30(3):20–26, 2001.

[8] Y. Stavrakas. Multidimensional semistructured data: representing and querying context-dependent multi-
facet information on the web. PhD thesis, Department of Electrical and Computer Engineering, National
Technical University of Athens, Greece, June 2003.

[9] Y. Stavrakas, and M. Gergatsoulis. Multidimensional Semistructured Data: Representing Context-
Dependent Information on the Web. In Proc. of CAiSE’02, pp. 183–199, Springer 2002.

[10] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang. Storing and
querying ordered XML using a relational database system. In Proc. of the 2002 ACM SIGMOD Int.
Conf. on Management of Data, pp. 204–215. ACM, 2002.

