
A Client-Server Design for Interactive Multimedia

Documents Based on Java

D. Tsirikos1, T. Markousis1, Y. Mouroulis1, M. Hatzopoulos1, M. Vazirgiannis2, and
Y. Stavrakas3

1 Dept. of Informatics, University of Athens, HELLAS
2 Dept. of Informatics, Athens Economic & Business University, HELLAS

3 Dept of El. & Comp. Engineering, National Technical University of Athens, HELLAS

Abstract. In this paper we present the design and implementation of a client-
server system for Interactive Multimedia Documents (IMDs). IMDs are based
on a well-founded theoretical model that covers the issues of interaction and
spatiotemporal synchronization of multimedia objects that are presented
according to an IMD scenario. The scenaria reside on a server, while the media
objects are distributed over the Internet. The client retrieves a scenario from the
server, requests the appropriate media from the corresponding http servers and
subsequently resents the scenario according to the specifications it defines. In
this respect the client uses events (simple and complex) to track the state of
each media object and manipulate it. The whole framework has been
implemented in Java using the RMI (Remote Method Invocation) client server
communication protocol and the JMF (Java Media Framework) for handling
multimedia objects. The system presents a promising approach for distributed
interactive multimedia on the Internet and intranets.

Keywords. Interactive Distributed Multimedia Applications, Interactive
Scenario Rendering, Multimedia Synchronization, Java.

1.� Introduction

Multimedia technology has greatly affected the way we interact with computers. But
although multimedia capabilities have become something we expect—and get—from
most software applications, the exponential growth of the Internet is bearing a second
wave of change, in the form of distributed multimedia. The media objects do not have
to be replicated locally in order to be presented; they can be viewed on demand
directly from the site where they reside. The issue of distributed Interactive
Multimedia Documents (IMDs) and, specifically, their retrieval and execution, is an
issue of current research [9,4]. However, most of the proposed systems suffer from
limited interaction support, both at the modelling and at the implementation level.

In order to create and present an IMD we have defined a strong theoretical model. An
IMD is defined in terms of actors, events and scenario tuples. The actors represent
the participating media objects and their spatiotemporal transformations. An actor
does not contain the media to be presented; instead it uses a pointer to the location of
the media. Events are the interaction primitives and they may be atomic or complex.
They are generated by user actions, actor state changes or by the system. In [18] the
reader may find details about a rich model for events in IMDs. The primary
constituent of an IMD is the scenario (i.e. a set of scenario tuples). A tuple is an

autonomous entity of functionality in the scenario, conveying information about
which event(s) start (or stop) an instruction stream. The latter is a set of synchronised
media presentations, i.e. an expression that involves Temporal Access Control (TAC)
actions on actors, such as start, stop, pause, and resume. In [19] a set of operators has
been defined for the TAC actions and for the corresponding events.

The rest of the paper is organised as follows: in section two we refer to the technical
choices we did in terms of software tools and platforms, while in sections three and
four we elaborate on the design and implementation of the server and the client
respectively. In section five we refer to related work and in the last section we
summarise our contribution and indicate directions for further research.

2.� The Implementation Framework

The system implementation is based on Java and other accompanying technologies
due to its appealing features, such as built-in multi-thread support and cross-platform
compatibility. The advantages that arise by that choice are:
•� Platform independence: The server is written in 100% Java and will run on any

environment that supports Java. The client is also written in Java, but makes
extensive use of the JMF API. This API uses native (platform dependent)
methods and it is currently available for Windows/Intel, Solaris/Sun, IRIX/SGI
and MacOS/Macintosh machines. We tested our implementation with Intel’s API
for Windows, which was the first to be made available.

•� Internet use: Most current browsers support Java. Shortly the client will run as an
applet, it can be downloaded by the browser and used to present scenaria on a
separate window. This eliminates the need to install and customise the client, and
enables its automatic upgrade without user intervention.

•� Built-in multi-thread support: With Java it is easy to create multi-threaded
programs. The theoretical model we exploited is oriented to concurrent media
presentations that interact with each other. Thus implementing each object as a
thread, comes quite naturally. Moreover, using separate threads improves
robustness since if one of them crashes the rest of the application will continue.
This improves the fault tolerance, a necessary measure considering the number of
potential pitfalls in a network application.

The communication between the client and the server is performed exclusively using
the RMI (Remote Method Invocation) protocol [6], a technology used to seamlessly
distribute Java objects (in our case IMDs) across the Internet and intranets. The
choice of RMI instead of CORBA for the communication protocol is based on the
following reasons:
•� RMI allows Java objects to call methods of other Java objects running in

different virtual machines. These methods can return primitive types and object
references, but they can also return objects by-value unlike CORBA and DCOM.

•� RMI has a very flexible way of providing support for persistent objects (the
IMDs in our case) as it uses Java serialisation to store and retrieve objects.
Serialisation is efficient and easy to use and suits well our case as we only need
to store scenaria without any need for complex operations on objects, relations

between them or transaction processing. Furthermore RMI does not require the
use of extra software as ORBs and is more efficient than CORBA.

When it comes to presenting media objects we make a distinction between continuous
(video and sound) and static (all other kinds of) media. The former are presented
using the JMF [7], which specifies a unified architecture, messaging protocol and
programming interface for playing and capturing media. Streaming media is
supported, where video and sound are reproduced while being downloaded without
being stored locally, a feature we exploit extensively. For static media we use the
standard Java classes as defined in the Java language without any need for the JMF.

An important architectural choice in our system is the logical and physical separation
of the content (media data) and structure of a scenario. The advantages of the logical
separation are well known and are explained in many approaches (such as [5,19]).
The physical separation may contribute to significant enhancement of Quality of
Service (QoS). As the media data can reside in different servers, we should be able to
dynamically select the server with the least workload and the best network connection
in order to minimise the presentation delay of the scenario. This can prove extremely
helpful when dealing with scenaria that contain a large amount of video and sound
data (the most demanding media types in terms of network bandwidth). Concerning
the implementation status of the proposed architecture, we have a fully functional
server and client that have been successfully used to view example scenaria that range
from a few buttons to a full-fledged presentation with lots of sound and images and
about 20MB of video. All scenaria were tested over Ethernet LAN’s and over a
WAN. Areas not yet covered are spatial synchronization relationships and QoS issues.

3.� The Server and the Communication Architecture

The servers’ task is to provide the client with the scenaria it requests, together with
all the media they use. In order to minimise download latency and space requirements
at the client side, the media are requested by the client only at the moment they are to
be presented. This depends on user interactions and on the scenario itself (for example
if the user presses ButtonA then he will see Image1 whereas if he presses ButtonB he
will see Video2).

The server system carries out two tasks:
•� The storage of scenaria. This is handled by the IMD server which is responsible

for publishing a list of the scenaria it can provide. At this level, all
communication with the client is performed by remote method calls, through the
Java RMI registry. All scenaria are implemented as serializable Java objects,
stored in a file at the server side.

•� The distribution of media, which is handled by a set of http servers. The client
downloads a scenario, parses and executes it. When some media should be
displayed, the client communicates directly with the corresponding http server
and retrieves it. In case of static media, these are first downloaded and then

presented according to the scenario specifications. However, when continuous
media are to be shown, they are played directly from their site of origin without

being locally stored, using the JMF. The decisive factor on the selection of JMF
was that it needs to be present only at the client side; while on the server side, any
http server can be used without any special configuration. This allows the
massive distribution and replication of media to any number of http servers,
thereby reducing the load on any individual server; whereas the scenaria (usually
only a few kilobytes in size), can all be served by one machine. Another
interesting option, is the ability to use http servers owned and administered
outside the scenario creation team.

Figure 1. An IMD lifecycle

4.� The Client

The client retrieves scenaria from the server, media objects from the appropriate http
servers, and presents them according to scenario and interaction. An IMD scenario
execution scheme must primarily be able to detect and evaluate events generated by
the system, the user or the actors. Other important features are asynchronous
activation of tuples, concurrent execution of all instruction streams and synchronised
presentation actions according to the scenario tuples’ specifications.

Each element of a scenario (i.e. tuples, events and actors) has been implemented as a
different Java class. Therefore, we have a ScenarioPlayer class and a TuplePlayer

class that are capable of handling an IMD scenario and a scenario tuple respectively.
Each actor is an instance of the Actor class that serves as the super-class of Video,
Image, Sound, Text, Button, Label and Timer. The class InstructionStreamPlayer is
responsible for synchronised presentation of media objects, while the listeners are in
charge of the presentation of a single media object and also of detecting all events
related to the object presented. Another fundamental class of our client design is the
EventEvaluator class, which is in charge of evaluating the start and stop events of all
tuples each time a simple event occurs and then send messages to the ScenarioPlayer

indicating which tuples should start or stop.

The outline of the IMD client architecture is shown in Figure 2. When an IMD
session starts, a ScenarioPlayer and an EventEvaluator object are created and the
“StartApp” (start application) event is generated. This event is sent to the
EventEvaluator , which determines which tuple(s) are to be started. ScenarioPlayer

then creates the corresponding TuplePlayer objects that create as many
InstructionStreamPlayer objects as necessary (remember, a tuple is a set of

IMD scenario Java parser

Interactive Client IMDs Server

HTTP ServerHTTP Server

media objects

Scenario text

IMD scenario object

instruction streams). Each InstructionStreamPlayer contains some actors, each actor
holding the presentation specifications for the media object it points to. For each actor
an appropriate listener is created. Each object created corresponds to a new thread.
During scenario execution, all events generated that are of some interest to the IMD
are sent to the EventEvaluator, which evaluates them and notifies the ScenarioPlayer

for changes in tuples’ states. Then the ScenarioPlayer starts/stops the appropriate
tuples either by creating new TuplePlayer objects or by destroying the ones that
should stop. When a tuple must be interrupted, all the participating actors are
interrupted (if they are active) and the corresponding event is sent to the
EventEvaluator. The client performs two main tasks: starting and interrupting
scenario tuples on the basis of occurring events and presenting media objects
according to the specifications of the actors. In the following subsections we present
these tasks in detail.

Figure 2. The architecture of the client for IMD scenario execution

4.1 Starting and Interrupting Scenario Tuples

Before proceeding we must distinguish between simple and complex events. Simple
events refer to an actor changing state, to events caused by the system or to events
originating from the user. Complex events are combinations of simple events, using a

start

stop
ScenarioPlayer

Listener

TuplePlayer

EventEvaluator

Evaluator
Notifier

ACTORS

Initialization
of the scenario

Creation of
tuple threads

Initialization of
instruction streams

Retrieval and
presentation of media
objects

Events generated
by the actors

Filtered
events

Events to start
and stop scenario
tuples

History List

IMD Scenario

set of operators (e.g. “event e1 AND (event e2 before event e3)”). The only complex
events in our design are the start/stop events of the tuples.

For the client application to present a scenario it must detect and evaluate the events
that occur in an IMD session and match them against the events included in the “start
event” / “stop event” attributes of the scenario tuples. A tuple is considered active

when the start event of that tuple is evaluated as true. At this point all instruction
streams of the tuple start executing. Once a tuple has been initiated, it may end in
natural or forced way. In the first case, the tuple falls into the idle state when all
instruction streams have finished. An instruction stream is considered as finished,
when all the involved actors have stopped. In the second case, the tuple stops when its
stop event becomes true. In order to avoid confusion, we explain hereby what are the
semantics of interrupting an actor. For this purpose we distinguish between actors
with inherent temporal features (sound or video) and actors without such features. An
actor of the first category falls in the idle state either when its natural end comes
(there is no more data to be presented) or when it is stopped using the stop operator
“!” [19]. Actors of the second category (e.g. an image) stop only when we apply the
stop operator to them. Hereafter we will examine the classes that are related to
management of scenario tuples, namely the ScenarioPlayer, the TuplePlayer, the
EventEvaluator, and the HistoryList classes.

The ScenarioPlayer class is responsible for the execution of an IMD. Initially it
constructs the window where the media are to be presented and receives all input
events (keyboard or mouse generated) as well as all application timer events. This
class is also responsible for starting and interrupting tuples. The TuplePlayer class is
in charge of starting and interrupting a scenario tuple. In other words, it starts the
instruction streams of the scenario tuple with no further effect on them. The
TuplePlayer must detect the termination of the instruction streams that it contains.
When all instruction streams have finished, the TuplePlayer informs the
ScenarioPlayer and then it stops. The EventEvaluator class evaluates simple events,
and the start and stop events of all the scenario tuples. This means that on arrival of a
new event, the start events of all idle tuples and the stop events of all active tuples are
evaluated, and those that are found to be true trigger the appropriate action(s). The
EventEvaluator additionally controls the synchronization of all threads that send
messages to it about events that occurred. This function is further explained in the
EvaluatorNotifier class presented in the next subsection. The HistoryList class is
contained as an attribute in the EventEvaluator. There is only one instance of this
class in each IMD session; it keeps information on the events that have occurred in an
IMD session from the start to the current time, which is defined as the time (in
seconds) elapsed since the start of the session. For each event we keep all the
timestamps of its occurrences. It is important to clarify that in the HistoryList only
simple events are stored.

4.2 Presenting the Media

In this section we present the classes of the client that are in charge of presenting the
media objects according to the synchronization relationships that are included in the
instruction streams. As mentioned above, each scenario tuple consists of a set of
instruction streams. Since not all instruction streams have the same effect on the actor

states, we distinguish two categories of instruction streams. The first one includes
instruction streams that begin with an actor followed by the start operator (>) and
remain active until all participating actors stop. The second category includes
instruction streams that contain the synchronization operator “/\” and remain active
until the temporally shorter of the involved actors finishes executing. If an instruction
stream contains the synchronization operator “/\”, it cannot contain any other operator
(i.e. >, !, ||, \>). The role of an instruction stream is to translate the synchronization
relationships between actors into actual operations on them.

A listener is responsible for presenting a single media object. For that purpose a set of
six classes (each for a different kind of actor) were created and all have the suffix
“Listener”. These classes do not only present actors, but also detect (“listen to”) any
events concerning the actor they are controlling (i.e. media state changes etc.). For
instance, the VideoListener class can start, stop, pause and resume a video clip; it can
also detect all kinds of events that are related to the particular video. A VideoListener

must receive appropriate messages from the InstructionStreamPlayer to start, pause,
resume and stop the video it is currently playing. The class is also in charge of
presenting the video according to the specifications in the corresponding actor. The
same applies to the other listeners.

Each listener occurrence is paired with an occurrence of the EvaluatorNotifier class.
This class serves as a filtering mechanism that sends to the EventEvaluator only the
events of interest to the IMD (i.e. the ones that the author of the scenario has already
defined and are stored in an auxiliary list). The EvaluatorNotifier receives messages
denoting actor state change, checks whether there is a related event defined by the
scenario author and, if such an event exists, sends it to the EventEvaluator. For
example, if the ButtonListener for button A detects that the button has been pressed, it
will send a “ButtonDown” event to the EvaluatorNotifier. The EvaluatorNotifier

checks if an event “ButtonDown” related to button A is defined by the author. If such
an event exists, it will be sent to the EventEvaluator together with its occurrence time
(timestamp). The EvaluatorNotifier class is responsible for performing the filtering of
events so that the EventEvaluator does not have to process redundant events.

4.3 Event Evaluation

As already mentioned, the interaction in our system is handled in terms of simple and
complex events occurring in the IMD context, generated by the user or the actors.
Hereafter, we describe the event evaluation process during which a simple event that
occurs in the IMD session is compared to the events that start/stop each tuple or
denote that the IMD session must stop. The evaluation process is carried out as
follows. At first, we are interested in the evaluation of a simple occurring event. This
task is accomplished by the function HYDOXDWHBVLPSOHBHYHQW� �VLPSOH
HYHQW�H�� that does not actually receive the event, but is called after the event has
been received. The method follows:

HYHQW(YDOXDWRU�³ORFNV´�LWVHOI�DIWHU�UHFHLYLQJ�DQ�HYHQW
HYDOXDWHBVLPSOHBHYHQW�VLPSOH�HYHQW�H��^

(YHQW(YDOXDWRU�UHFHLYHV�H�DQG�ZULWHV�LW�WR�+LVWRU\/LVW
IRU�HDFK�WXSOH�W

LI�W�LV�LGOH
WKHQ�HYDOXDWH��W�VWDUWBHYHQW��H�

LI�W�VWDUWBHYHQW�LV�WUXH
WKHQ�DGG�W�LQ�WXSOHVBWRBVWDUW�DUUD\�

HOVH
LI�W�LV�DFWLYH
WKHQ�HYDOXDWH��W�VWRSBHYHQW��H�

LI�W�VWRSBHYHQW�LV�WUXH
WKHQ�DGG�W�LQ�WXSOHVBWRBVWRS�DUUD\

HQG�IRU
VWDUWBWXSOHV�WXSOHVBWRBVWDUW�
VWRSBWXSOHV�WXSOHVBWRBVWRS�
`
HYHQW(YDOXDWRU�³XQORFNV´�LWVHOI
It is important to stress that during the period of event processing (EventEvaluator in
locked state) the occurring events are not lost, but are maintained in the respective
EvaluatorNotifiers. When the EventEvaluator is again available, it receives another
event and goes one more time into the locked state and processes it.

The function HYDOXDWH�W�VWDUWBHYHQW��H� carries out the evaluation of the
event H against the event expression stored in the start/stop event of each tuple. The
resulting value (true or false) will determine whether tuple W should start/stop. When
the start/stop event is a simple event, the evaluation is limited to searching in the
HistoryList for an occurrence of such an event. In case the start/stop event is complex,
it may contain expressions including operators and functions that are defined in the
framework presented in [19]. Our system implements the following subset of
operators: AND, OR, NOT, and of functions: ANY, ANYNEW, IN, TIMES, SEQ
and (event1: time_indication : event2).

For complex events the evaluation process is carried out in three distinct steps. The
first step is the transformation of the event expression into postfix form resulting in an
expression without brackets. The second step is the evaluation of each function
appearing in the expression, and replacing the function with the token “true” or
“false” according to the result of each function. The last step is to evaluate the result
that now consists of the tokens “true” or “false” combined with the Boolean
operators.

An IMD session is an environment that involves concurrent execution of several
tasks, such as event detection and evaluation, starting, interrupting and monitoring
scenario tuples, presenting media objects according to synchronization specifications,
etc. As already mentioned, we have used Java’s support for threads. Thus, each
instance of the classes Listener, EvaluatorNotifier, InstructionStreamPlayer,

TuplePlayer are served by the corresponding Java thread.

5.� Related Work

Regarding Multimedia Document Standards, there have been mainly two efforts:
HyTime and MHEG. HyTime [2] provides a rich specification of a spatiotemporal
scheme with the FCS (Finite Coordinate Space). HyTime is not an efficient solution
for IMD development since “there are significant representational limitations with
regard to interactive behaviour, support for scripting language integration, and
presentation aspects” [2]. MHEG [5] allows for user interaction between the selection
of one or more choices out of some user-defined alternatives. The actual selection by
a user determines how a presentation continues. Another interaction type is the
modification interaction, which is used to process user input. Object Composition
Petri Nets (OCPN) [10] do not allow modelling of interaction.

As mentioned in [1], event based representation of a multimedia scenario is one of the
four categories for modelling a multimedia presentation. There it is mentioned that
events are modelled in HyTime and HyperODA. Events in HyTime are defined as
presentations of media objects along with its playout specifications and its FCS
coordinates. All these approaches suffer from poor semantics conveyed by the events
and, moreover, they do not provide any scheme for event composition and detection.
There has been substantial research in the field of multimedia storage servers,
especially video servers. For real-time applications, there is a strong need for
streaming media. Most of the work in this field has been carried out by the industry.
Some related efforts are the following:

•� RTSP, developed by Progressive Networks and Netscape Communications [15]
to cover the need of transferring multimedia through IP networks. RTSP offers an
extensible framework for transferring real-time data such as audio and video. It
has been designed to work with established protocols such as RTP and HTTP,
and constitutes a complete system for the transmission of streaming media
through the Internet.

•� Microsoft Netshow. It is a product of Microsoft for the transmission of streaming
multimedia through intranets, LANs and the Internet. It supports multicasting and
unicasting and it can broadcast stored data as well as live feed. NetShow is
related to ActiveMovie technology, which is used by the Intel implementation of
the JMF.

•� Berkeley Continuous Media Toolkit (CMT) [16]. It is a framework that consists
of a suite of customisable applications that handle streaming multimedia data. It
requires significant programming to support each medium. On this toolkit,
cmplayer [14] was built, an application that is used to present remote continuous
media in conjunction with a web browser. It supports the synchronised
reproduction of multiple media and is available for most platforms.

All the above projects concentrate on how media are transferred and displayed. On
the other hand, the context in which the media are to be presented is not considered.
This is the field of distributed multimedia applications, which has received less
attention by researchers. Some of the most interesting efforts are:

•� NetMedia. A client-server architecture that can be used for the development of
multimedia applications. It is described in [8], where algorithms are described for
the effective synchronization between media and the maintenance of a QoS.

•� CHIMP. Here the definition of multimedia document is broader than in other
efforts, since such a document “consists of different media objects that are to be
sequenced and presented according to temporal and spatial specifications” [3].

•� The system proposed in [12] involves more user participation, since it is the user
who controls the course of the presentation. A framework for link management
within hypermedia documents is described, which supports embedding dynamic
links within continuous media such as video, as well making queries to a
database.

•� A similar architecture is presented in [11], which suggests the use of video-based
hypermedia to support education on demand. The system is based on URLs,
which are embedded in QuickTime movies. There is no notion of time or events,
and the systems bias towards applications such as video-based lectures could be
the reason for the limited interaction it offers.

•� The time factor is systematically considered in [13], where temporal as well as
spatial events between multiple media are defined. A prototype scenario-
authoring tool based on Windows 95 is described, while the scenaria it produces
can also be reproduced in different platforms.

To summarise, there is an extensive coverage of topics such as streaming video, as
well as multimedia presentations. However, the merging of the two areas combined
with substantial user interaction, has received little attention by researchers and is still
an open issue.

6.� Conclusions

In this paper we have presented a Java-based client-server system for IMDs,
supporting a high level of interactivity and distribution of scenario and media. The
architecture of the implemented system consists of the IMD scenario server, the
media servers and the client module. The IMD scenario server provides the scenaria,
while the media objects are distributed in any http server. The client retrieves a
scenario from the server and requests the appropriate media from the corresponding
http servers. The client design covers widely the issue of interaction with external and
internal entities in terms of simple and complex events. Moreover, it maintains the
high-level spatial and temporal synchronization requirements of each scenario. The
system has been implemented in Java using the RMI client server communication
protocol and the JMF for handling multimedia objects.

The salient features of the system presented are:

•� Support for highly interactive presentations, due to the model exploited in [18,
19]. This model covers internal and external interaction in terms of events.
Complex interaction may be covered by composite events using the appropriate
composition operators.

•� Platform independence: platform independent design of a client server system for
IMDs. The physical separation of IMD structure (scenario) and content (media),
i.e. media to be presented may reside at any http server, allows the usage of
external resources for storage and presentation on the IMD content, and reduces
the workload and maintenance for the server. The choice of Java (along with
accompanying technologies like RMI and JMF) as the implementation platform
and the storage of media objects in http servers, makes the design appealing for
wide Internet usage. The clients are capable of presenting multiple scenaria
simultaneously. The ability to view IMDs using Java applets makes the
application available to anyone with a WWW browser.

•� Generic multi-threaded approach for rendering interactive scenaria. Based on a
rich IMD model [18, 19], we have developed a robust mechanism for detection
and evaluation of events as carriers of interaction, and the corresponding
synchronized media presentation algorithms. This approach is generic and may
be considered as rendering architecture in other emerging application domains
like synthetic 3D worlds etc.

Due to the feasibility of running the client module in any WWW browser, the system
presents a promising approach for distributed interactive multimedia on the Internet
and intranets.

The architecture presented here may be extended towards the following directions:

•� Provision of QoS. Provisions could be made to ensure the QoS.
•� Database support at the server side. Another extension would be the storage of

IMDs in a database system. This will make the server capable to serve large
quantities of IMDs and requests, as well as handling queries related to the
structure of the scenario. Such queries might me: “give me the IMDs that include
video1” or “give me the IMDs which include the word “vacation” in at least one
of the texts that they present”.

•� “Import” other document formats. Extend the parser module so that documents
resulting from popular authoring tools or other Multimedia Document Standards
(Hytime, MHEG) may be stored in our system. This procedure would involve
development of translators of such documents to the IMD model that serves as
the basis of our system.

References

1. Blakowski, G., Steinmetz, R., “A Media Synchronization Survey: Reference Model,
Specification, and Case Studies”, IEEE Journal on Selected Areas in Communications,
vol 14, No. 1, (Jan. 1996), 5-35

2. Buford, J., “Evaluating HyTime: An Examination and Implementation Experience”,
Proceedings of the ACM Hypertext ’96 Conference, (1996)

3. Candan, K., Prabhakaran, B., Subrahmanian, V., “CHIMP: A Framework for Supporting
Distributed Multimedia Document Authoring and Presentation”, Proceedings of the
fourth ACM international multimedia conference, Boston, (1996), 329-340

4. Huang, C.-M., Wang, C., “Interactive Multimedia Communications at the Presentation
Layer”, in the proceedings of IMDS’97 workshop, Darmstadt, Germany, (1997), LNCS
1309, 410-419

5. ISO/IEC, Information Technology - Coded representation of Multimedia and Hyper-
media Information Objects (MHEG), (1993)

6. Java-Remote Method Invocation, available at:
http://java.sun.com:81/marketing/collateral/rmi_ds.html

7. Java–Media Framework, available at: http://www.javasoft.com/products/java-media/jmf/

8. Johnson, T., Zhang, A., “A Framework for Supporting Quality-Based Presentation of
Continuous Multimedia Streams”, Proceedings of the IEEE International Conference on
Multimedia Computing and Systems (ICMCS’97), Ottawa, Canada, (June 1997), 169-176

9. Karmouch. A., Emery J., “A playback Schedule Model for Multimedia Documents”,
IEEE Multimedia, v3(1), (1996), 50-63

10. Little, T., Ghafoor, A., “Interval-Based Conceptual Models for Time-Dependent
Multimedia Data”, IEEE Transactions on Data and Knowledge Engineering, Vol. 5, No.
4, (August 1993), 551-563

11. Ma, W., Lee, Y., Du, D., McCahill, M., “Video-based Hypermedia for Education-On-
Demand”, Proceedings of the fourth ACM international multimedia conference, Boston,
(1996), 449-450

12. Manolescu, D., Nahrstedt, K., “Link Management Framework for Hypermedia
Documents”, Proceedings of the IEEE International Conference on Multimedia
Computing and Systems (ICMCS’97), Ottawa, Canada, (June 1997), 549-556

13. Nang, J., Kang, S., “A New Multimedia Synchronization Specification Method for
Temporal and Spatial Events”, Proceedings of the IEEE International Conference on
Multimedia Computing and Systems (ICMCS’97), Ottawa, Canada, (June 1997), 236-243

14. Patel, K., Simpson, D., Wu, D., Rowe, L., “Synchronized Continuous Media Playback
Through the World Wide Web”, Proceedings of the fourth ACM international multimedia
conference, Boston, (1996)

15. Schulzrinne, H., Rao, A., Lanphier, R., “Real Time Streaming Protocol (RTSP)”,
ftp://ftp.isi.edu/in-notes/rfc2326.txt, (1997)

16. Smith, B., Rowe, L., Konstan, J., Patel, K., “The Berkeley Continuous Media Toolkit”,
Proceedings of the fourth ACM international multimedia conference, Boston, (1996),
451-452

17. Stamati, I., Trafalis, M., Vazirgiannis, M., Hatzopoulos, M., “Event Detection and
Evaluation in Interactive Multimedia Scenaria - Modeling And Implementation”,
Technical Report, Dept of Informatics, University of Athens, Hellas, (1997)

18. Vazirgiannis, M., Boll, S., “Events In Interactive Multimedia Applications: Modeling
And Implementation Design”, in the proceedings of the IEEE - ICMCS’97, (June 1997),
Ottawa, Canada

19. Vazirgiannis, M., Theodoridis, Y., Sellis, T., “Spatio-Temporal Composition and
Indexing for Large Multimedia Applications”, to appear in ACM/Springer Verlag
Multimedia Systems Journal, September 1998.

