
 

A Language for Defining and Detecting Interrelated Complex 

Changes on RDF(S) Knowledge Bases 

Theodora Galani
1, 2

, George Papastefanatos
1
 and Yannis Stavrakas

1
 

1Institute for the Management of Information Systems, RC ATHENA, Artemidos 6 & Epidavrou,Marousi, Greece 
2School of Electrical and Computer Engineering, NTUA, Zografou, Athens, Greece 

theodora@dblab.ece.ntua.gr, {gpapas, yannis}@imis.athena-innovation.gr 

Keywords: change management, data evolution, rdf(s) 

Abstract: The dynamic nature of web data brings forward the need for maintaining data versions as well as identifying 

changes between them. In this paper, we deal with problems regarding understanding evolution, focusing on 

RDF(S) knowledge bases, as RDF is a de-facto standard for representing data on the web. We argue that 

revisiting past snapshots or the differences between them is not enough for understanding how and why data 

evolved. Instead, changes should be treated as first-class-citizens. In our view, this involves supporting 

semantically rich, user-defined changes that we call complex changes, as well as identifying the 

interrelations between them. In this paper, we present our perspective regarding complex changes, propose a 

declarative language for defining complex changes for RDF(S) knowledge bases, and show how this 

language is used to detect complex change instances among dataset versions. 

1 INTRODUCTION 

The increasing amount of information published on 

the web poses new challenges for data management. 

A central issue concerns evolution management. 

Data published on the web frequently change, as 

errors may need to be fixed or new knowledge has to 

be incorporated. Data consumers need to know what 

changed among versions, as well as how and why it 

changed. Thus, the need for maintaining data 

versions and identifying changes becomes evident.  

In this paper we focus on interpreting evolution 

on RDF(S) knowledge-bases, as RDF is the de-facto 

standard for representing data on the web. A typical 

approach for handling changes among dataset 

versions is computing diffs between them, leading to 

a machine-readable representation of changes based 

on triple additions and deletions. This approach does 

not provide any intuition about change semantics or 

possible relations between them. An ideal approach 

would compute human-readable, semantically rich 

changes along with any interrelations between them.  

For example, consider a simplified ontology 

representing a company's employees, as in Figure 1. 

Figure 1(a) depicts the initial version, while Figure 

1(b) the version after the modifications. Note that 

classes are in bold font. Each employee is described 

by her name, salary, position and optionally grade 

and projects assigned. Employees are organised in a 

hierarchical structure, depicting position hierarchy, 

as each one refers to another. In Figure 1(b), 

modified parts are depicted in light grey. Initially, 

employee "theo" is leading a small team of 

programmers, comprising of "mary" and "kate" 

working on project A. Later, he gets an excellent 

appraisal turning his grade from 9 to 10. As a result, 

he gains a salary increase. Also, he gets promoted to 

a manager. The promotion leads to an additional 

salary increase and overall the salary doubles. As the 

business goes well, a new employee has to be hired 

in order to organize the increasing team 

responsibilities. As a result, a new team leader is 

added, "nick", serving as senior employee, guiding 

"mary" and "kate", and reporting to the manager. 

From now on, the projects are assigned to him and 

thus they are moved from "mary" and "kate" to him. 

Computing the diff between these two versions 

totally misses capturing change semantics and 

dependencies. Understanding the intentions behind 

data modifications can be even more complicated for 

large datasets, where changes are numerous and 

dispersed. Instead, Figure 2 depicts an intuitive and 

descriptive representation of how data changed. 

Figure 2(a) depicts the modifications regarding 

"theo", while Figure 2(b) regarding "nick". Each



 

 

Figure 1: Simplified part of an employee ontology. (a) Initial version. (b) Version after modifications. 

node represents a change instance detected 

between the aforementioned dataset versions. 

Change instances on leaf nodes (in grey) are fine-

grained and model-specific, meaning that they do 

not comprise of other change instances and their 

semantics suit to the RDF data model. Each one 

corresponds to an added or deleted triple, having a 

suitable name and descriptive parameters. They are 

simple change instances. The rest change instances 

(in white) are coarse-grained and application/data-

specific, meaning that they demonstrate structure 

and semantics suitable to the employee example. 

The hierarchical structure indicates that a change 

instance is build on top of others, demonstrating 

relations and dependencies among changes. They 

are complex change instances. 

Consider the change instances Add_Grade and 

Delete_Grade in Figure 2(a). They serve as 

specializations of the model specific Add_Property 

_Instance and Delete_Property_Instance, 

respectively. This holds for all similar change 

instances regarding employee properties. 

Employee_Positive_Appraisal instance contains 

them, modelling the positive evaluation that took 

place. Similarly, Employee_Promotion_Manager 

and Employee_Salary_Increase group change 

instances providing richer semantics on how data 

changed. Employee_ Salary_Increase is caused by 

Employee_Positive_Appraisal and Employee_ 

Promotion_Manager. Causality is modelled on top 

of these changes through Salary_Increase_after_ 

Positive_Appraisal and Salary_Increase_after_ 

Promotion_Manager. These change instances are 

overlapping as they share a common part, 

Employee_Salary_Increase, modelling that they 

cause the same effect on data. Similar properties 

are demonstrated on change instances of Figure 

2(b). Add_Employee instance groups all properties 

related to a newly added employee. Add_ 

Senior_Employee instance is a specialization of 

Add_ Employee, where the added employee (with 

id e:Q551181, i.e. "nick") reports to a manager 

(with id e:M227757, i.e. "theo") and serves as a 

leader to other employees (with ids e:N338868 and 

e:P449979, i.e. "mary" and "kate"). This is 

modelled by the position he gets in the hierarchy, 

via Add_Reference instances. Also, Add_Senior_ 

Employee instance contains a Move_Project_ 

Assignment instance, as project A is moved from 

"mary" and "kate" to "nick", and Delete_Reference 

instances as these employees initially had "theo" as 

a leader. These changes are secondary and may 

happen when adding a senior employee. 

In this paper, we argue that for understanding 

data evolution, changes should be treated as first-

class-citizens. In our view, this involves supporting 

human-readable, semantically rich, user-defined 

changes, named complex changes. These changes 

are application/data-specific and coarse-grained, 

defined over primitive and model-specific changes, 

named simple changes. Modelling explicitly 

complex changes provides additional information 

for interpreting past data, while supporting user-

defined changes allows interpreting evolution in 

multiple ways. On top of this, supporting 

interrelated complex changes, through nesting and 

overlaps, is an additional feature that enriches the 

complex changes' expressivity. A complex change 

may be part of another, may generalize/ specialize 

another, may cause another or may provide 

supplementary interpretation of evolution. Section 

3 contains the basic concepts of our approach. 

Given these concepts, we provide a declarative 

language for defining complex changes (Section 

4). We then define a process for detecting complex 

change instances among dataset versions (Section 

5). Both the language and detection algorithm are 

influenced by our main contribution of supporting 

interrelated complex changes. Section 2 discusses 

related work and Section 6 concludes the paper. 

2 RELATED WORK 



 

 

Figure 2: Hierarchy of detected simple and complex change instances (in grey and white fill respectively) of the employee 

ontology of Fig. 1. (a) Change instances regarding "theo". (b) Change instances regarding "nick". 

A number of works focus on computing the 

differences between knowledge bases. In (Berners-

Lee and Connolly, 2004) an ontology for 

representing differences between RDF graphs, in 

the form of insertions and deletions, is proposed. 

RDF graphs comparison is discussed, as well as 

updating a graph from a set of differences. In 

(Volkel et al., 2005) two diff algorithms are 

proposed: one computing a structural diff (as the 

set-based difference of the triples explicitly 

recorded into the two graphs), and one semantic 

diff (taking into consideration the semantically 

inferred triples). In (Franconi et al., 2010), an 

approach for computing a semantic diff is 

proposed, focusing on propositional logic 

knowledge bases but also being applicable to more 

expressive logics. A number of desired properties 

are discussed, like semantic diff uniqueness, the 

principal of minimal change, the ability to undo 

changes and version reconstruction. Similar 

properties are supported in (Zeginis et al. 2011), 

which focuses on computing deltas over RDF(S) 

knowledge bases. In (Noy and Musen, 2002; Klein, 

2004), a fixed point algorithm for detecting 

ontology change is proposed. It employs heuristic-

based matchers, introducing uncertainty to results. 

Other works focus on supporting human-

readable changes. In (Papavasileiou et al., 2013), a 

set of predefined high-level changes for RDF(S) 

knowledge bases and an algorithm for their 

detection are proposed. Changes verify the 

properties of completeness and unambiguity, for 

guaranteeing that every added or deleted triple is 

consumed by one detected high-level change and 

that detected high-level changes are not 

overlapping, respectively. In (Roussakis et al., 

2015), an extension of (Papavasileiou et al., 2013) 

is proposed, providing a more generic change 

definition framework, based on SPARQL queries. 

In (Plessers, De Troyer and Casteleyn, 2007), 

Change Definition Language is proposed for 

defining and detecting changes over a version log 

using temporal queries. In (Auer and Herre, 2007) 

a framework for supporting evolution in RDF 

knowledge bases is discussed. Changes are triple 

additions and deletions and aggregated triples, 

resulting in a hierarchy of changes. However, 

neither a detection process, nor a specific language 

of changes is defined. In (Klein, 2004), an 

extension of (Noy and Musen, 2002) is proposed 

for detecting some of the proposed basic and 

composite changes. In general, (Klein, 2004), 

(Papavasileiou et al., 2013) and (Stojanovic, 2004) 

provide human readable changes in similar 

categories regarding granularity and semantics. 

Our approach focuses on human readable 

changes. A visionary work was presented in 

(Galani et al., 2015). Similar to (Klein, 2004), 

(Papavasileiou et al., 2013), (Roussakis et al., 

2015) and (Stojanovic, 2004) we assume primitive 

changes, as simple changes, and groupings of 

them, as complex changes. Instead of providing a 

predefined list of complex changes, we support 

user-defined complex changes in order to capture 



 

richer semantics and multiple interpretations of 

evolution, as (Plessers, De Troyer and Casteleyn, 

2007) and (Roussakis et al., 2015). Our main 

contribution is supporting interrelated complex 

changes providing a language for defining complex 

changes over simple or other complex changes and 

an appropriate detection algorithm. (Plessers, De 

Troyer and Casteleyn, 2007) and (Roussakis et al., 

2015) do not support interrelated complex changes. 

3 SIMPLE AND COMPLEX 

CHANGES 

Modelling changes as first class citizens involves 

taking into account granularity and semantics of 

changes. Granularity poses the question of having 

fine-grained or coarse-grained changes. Fine-

grained changes have the advantage of describing 

primitive changes, while coarse-grained changes 

provide semantics and conciseness by grouping 

primitive changes in logical units. Semantics poses 

the question of having model-specific or 

application/data-specific changes. Model-specific 

changes describe modifications that appear in a 

specific model, constituting a fixed set of generic 

changes. Application/data-specific changes suit 

specific use-cases and may be user-defined, 

allowing multiple interpretations of evolution. 

As a result, we distinguish between simple and 

complex changes. Simple changes constitute a 

fixed set of fine-grained, model-specific changes. 

Complex changes are coarse-grained, user-defined, 

application/data-specific changes providing richer 

semantics on how data changed. Definitions 1 and 

2 formally define simple and complex changes. 

Definition 1: A simple change   is a tuple 

     , where:  

   is the name of  , which must be unique. 

   is the list of descriptive parameters of  , 

where each one has a unique name within  .  

Definition 2: A complex change   is a 

quadruple          , where: 

   is the name of  , which must be unique 

and different from the simple change names. 

   is the list of descriptive parameters of  , 

where each one has a unique name within  . 

   is the set of simple (  ) and complex 

changes (  ) that   comprises of, where 

       ,         and    . 

   is the set of constraints (  ) that changes 

in   verify and bindings (  ) specifying the 

parameters in  , where         and 

       . Constraints are on changes 

(  
   ) or change parameters (  

   
), where 

     
      

   
 and   

      
   

  .  

For simple changes we rely on (Papavasileiou 

et al., 2013). Appendix summarizes the simple 

changes considered. They verify completeness and 

unambiguity properties, constituting a first layer of 

human-readable changes. Simple changes are 

additions, deletions and terminological changes 

(rename, split, merge) of RDF(S) entities (classes, 

properties, individuals). As stated, simple changes 

are fine-grained, i.e. they cannot be decomposed in 

more granular changes. This holds for additions/ 

deletions, but not for terminological changes, as 

they can be expressed as additions/ deletions plus 

extra conditions. For example, a class rename can 

be considered as an add class plus a delete class, 

which have the same "neighbourhood" (properties, 

connections to classes). However, we prefer them 

as simple changes in order to distinguish at simple 

change level real additions/deletions from virtual 

ones representing terminological changes. Thus, 

simple changes' set is not minimal.  

A complex change is defined in terms of simple 

or other complex changes verifying constraints. 

Constraints specialize its meaning and are divided 

into those defined on changes and those on change 

parameters. Bindings specify complex change 

parameter values. Section 4 includes more details. 

The ultimate goal of supporting simple and 

complex changes is detecting actual instances 

between dataset versions. Detection process leads 

into instantiating change parameters with values, 

indicating that specific data elements have been 

affected by a change in a specific manner. 

Definitions 3 and 4 define simple and complex 

change instances. Figure 2 presents simple and 

complex change instance examples. 

Definition 3: A simple change instance of a 

simple change      , is a tuple       where   is 

an instantiation of the parameters  . 

Definition 4: A complex change instance of a 

complex change          , is a tuple       

where   is an instantiation of the parameters  . 

For simple change detection we rely on 

(Papavasileiou et al., 2013). For complex changes 

we provide an algorithm in Section 5. Definition 5 

defines when a complex change instance is 

detected. Definitions 6 and 7 define possible 

relations among change instances, as interrelations 

between changes are reflected on them. 

Definition 5: Let             be a complex 

change and    and    two dataset versions. A 

complex change instance          is detected if 



 

for all changes in   instances are detected between 

   and   , forming   , such that constraints in    

are verified on   ,    and   , bindings in    

applied on    form   and    is maximal. 

We say that the set of change instances    

corresponding to    verifies the complex change  . 

Definition 6: Let    be an instance of complex 

change   and    the corresponding set of change 

instances verifying  .    contains the change 

instances in   .  

Definition 7: Let    and   
  be two complex 

change instances, where    does not contain   
  and 

vice versa. They are overlapping if they both 

contain at least one common simple or complex 

change instance. 

Containment is transitive. Complex change 

instances may form a hierarchy due to containment 

and overlaps, as in Figure 2. 

4 A LANGUAGE FOR 

DEFINING COMPLEX 

CHANGES 

We believe that an intuitive, user-friendly language 

based on change semantics should be provided for 

defining complex changes. Complex change 

definitions are then used for detecting respective 

instances. In this section, we propose a declarative 

language for defining complex changes. We 

provide its syntax by means of EBNF specification 

(Table 1) and some illustrative examples (Table 2) 

concerning the employee ontology in Figure 1. 

A complex change definition is composed by a 

heading and a body. The heading contains a unique 

name and a list of descriptive parameters. The 

body contains a list of changes that the complex 

change comprises of, constraints on the changes 

appearing in the list and their parameters, and 

parameter bindings declaring how complex change 

parameters are evaluated. Constraints and bindings 

are optional. A complex change definition is nested 

if complex changes appear in its change list. Thus, 

complex changes are defined as interrelated. 

Constraints are divided into cardinality, testing 

value, relational, pre/post-conditions and functions. 

Cardinality constraint determines whether zero, 

one or multiple instances of a specific change are 

to be grouped into a complex change. In case of 

one or multiple change instances, the change is 

defined as mandatory. In case of zero instances the 

change is defined as optional, and if no instance is 

detected, the respective complex change can be 

still detected. Thus, complex changes are flexible 

and tolerant in partially performed modifications of 

minor significance. Posing a cardinality constraint 

is optional. If it is not defined, the default case is 

one change instance for the respective change. The 

following notations hold: at least one change 

instance "+", zero or one "?", zero or more "*". 

Parameter bindings determine how complex 

change parameters are evaluated. In general, a 

complex change parameter equals a parameter of a 

change in its change list. However, recall that due 

to cardinality constraints multiple change instances 

of a specific change type may be grouped. In such 

case, a complex change parameter equals the union 

of the parameter values for all the change instances 

of a specific type grouped. As a result, complex 

change parameters are distinguished into those that 

evaluate into type set and those that evaluate into 

scalar values. In order to distinguish the parameter 

types, parameters evaluating into scalar values start 

with a lowercase letter, while those evaluating into 

sets with an uppercase letter. Parameter bindings 

are optional, in case they can be inferred by 

repeating each parameter into the contained 

changes and respective constraints. 

Testing value constraints, relational constraints, 

pre/post-conditions and functions are constraints 

defined on change parameters. Testing value 

constraints limit a parameter value against a given 

constant, while relational constraints involve two 

change parameters defining how changes are 

connected. For these constraints binary operators 

are supported. Pre/post-conditions define how 

parameters are related in the version before (Vb) or 

after (Va) the change, stating whether a triple must 

or must not exist in the version before or after. If a 

triple may be inferred in a version, this is denoted 

by the flag "inferred". Constraints may also be in 

the form of predefined functions of return type 

boolean. For example consider common functions 

on strings, like contains, which checks whether a 

string contains another given string. Constraints 

may form composite conditions, when combined in 

boolean expressions using logical and, or, not. 

As complex changes are used in nested 

definitions and complex change parameters may 

evaluate into set or scalar values, we support 

binary operators between sets and between sets and 

scalar values. Also, in order to write conditions on 

set elements we use quantified expressions, which 

may be in the form                   or 
                                  , where 

     and        are constraints on parameters 

evaluating into scalar values. 



 

Table 1: The EBNF specification of the complex change definition language. 

Table 2: Complex change definitions regarding the employee ontology of Figure 1. 

Table 2 contains complex change definitions 

regarding the changes of the employee ontology in 

Figure 1 discussed in introduction. Add_Grade 

models the case where a new grade property with 

value g is assigned to employee x. The changes it 

comprises of are declared in the "change list", 

while constraints in the "filter list". Add_Grade is a 

specialization of simple change Add_Property_ 

Instance, where the property equals to "e:grade". 

This is a testing value constraint over parameter 

prop. Notice that no binding is defined explicitly, 

as they are inferred by repeating complex change 

parameters as parameters of the changes in change 

list. Besides Add_Property_Instance no cardinality 



 

constraint is defined, meaning that cardinality one 

is inferred. Similar complex change definitions for 

all employees' properties can be given, but are 

omitted due to space limitations. Employee_ 

Positive_Appraisal models the case when an 

employee x gets a new grade, ng, greater than the 

old one, og. It comprises of Add_Grade, so that the 

new grade is assigned to the employee, and Delete 

_Grade, so that the old grade is removed, both 

referring to the same employee x. A relational 

filter compares the new and the old grade. 

Empployee_Salary_Increase is similarly defined. 

Employee_Promotion_Manager models the case 

when an employee x becomes a manager. Add_ 

Position assigns the new position to x and Delete_ 

Position deletes the old one. A testing value 

constraint specifies the new position as e:Manager. 

The complex change Salary_Increase_after_ 

Positive_Appraisal comprises of Employee_Salary 

_Increase and Employee_Positive_Appraisal, 

modelling the case when a salary increase of 

employee x is caused after receiving positive 

appraisal. Thus, complex changes are grouped due 

to a causality relation. A similar concept holds for 

Salary_Increase_after_Promotion_Manager. These 

changes both base on Employee_Salary_Increase, 

as they try to explain why this increase has been 

caused. Thus, respective instances may overlap, if 

they both refer to the same employee, like "theo" 

in Figure 1 and 2. Due to nested definitions the 

respective instances lead to a hierarchical structure. 

Move_Project_Assignment models the case 

where a project val, initially assigned to a set of 

employees S, is later assigned to another employee 

c. It comprises of Add_Project, as the project is 

assigned to c, and Delete_Project, as the project is 

deleted from another employee s. Both changes 

refer to the same project, as val is repeated in both. 

Besides Delete_Project "+" is noted. This is a 

cardinality constraint defining that there might be 

multiple deletions. The project may be initially 

assigned to multiple employees and then deleted 

from many of them. In such case, all these 

Delete_Project instances will be grouped into the 

respective complex change instance (through 

detection process). Now, consider that similarly the 

project can be moved to multiple employees too. 

This would cause multiple Add_Project instances. 

But, on Add_Project it is assumed cardinality one. 

Therefore, only one instance will be grouped in 

every complex change instance and multiple 

complex change instances will be detected, one for 

each Add_Project instance. As a result, supporting 

cardinality is important in order to define how 

change instances are grouped. We choose to follow 

cardinality as in Table 2 in order to construct 

groupings per project and per employee it has been 

moved to. Due to cardinality constraint, parameter 

S holds all employee' ids that the project has been 

removed from, as defined in the binding list. 

Add_Employee models the case where a new 

employee is added with a number of descriptive 

properties. x is of type e:Employee, as defined in 

the testing value constraint. Property grade is 

optionally added, as defined by "?" besides Add_ 

Grade. Add_Project is optional too, but if it is 

added there might be many instances ("*"). Add_ 

Senior_Employee is a specialization of Add_ 

Employee and thus it is defined on top of it. It 

models the case when a newly added employee 

refers to a manager and leads other employees. 

This is described by e:refersTo property, through 

Add_Reference changes. The fact that the added 

employee refers to a manager is defined by the 

second post-condition. Also, it is likely that 

projects are moved to the added employee from the 

employees he leads. This is demonstrated by 

Move_Project_Assignment and the first post-

condition. A quantified expression is used in order 

to write the post-condition on the elements of set S. 

5 COMPLEX CHANGE 

DETECTION 

Complex change detection is the process of 

identifying complex change instances. It requires 

as input a set of simple change instances detected 

between two dataset versions (  ), the actual 

dataset versions (before    and after   ) and the 

complex change definitions that will be evaluated 

for detecting respective instances ( ). We focus on 

how nested complex change definitions are 

handled and how constraints are evaluated. In 

order to implement the language, we translate it 

into an already implemented language. As this 

approach concerns RDF data, we choose to rely on 

SPARQL, which provides similar capabilities to 

our language. The presented Algorithm involves 

two steps: the first step handles nested definitions, 

the second produces complex change instances.  

As for the first step, suppose a complex change 

  whose definition is based on a set of complex 

changes (    ). The detection of   instances 

depends on detecting the instances of each 

complex change in    and therefore follows their 

detection. Note that mutually dependent complex 



 

changes are not supported. In general, complex 

change definitions constitute a directed acyclic 

graph, where nodes represent changes and edges 

dependencies between them. An edge departing 

from a complex change   arrives at changes in    

according to its definition. Thus, detection follows 

a post-order depth-first scheme on the induced 

dependency graph by complex change definitions. 

This is stated in line 2 of proposed Algorithm. 

postOrderDfs function call runs over the set of 

complex changes   identifying the dependencies 

among changes, returning a queue   of all changes 

in  , where the order of elements defines the order 

in which they have to be detected. 

As for the second step, for each complex 

change   in  , instances are computed (lines 3-10). 

The main idea is that our language is translated 

into SPARQL queries. Accordingly, simple and 

complex change instances and dataset versions are 

encoded as RDF data, so that constructed SPARQL 

queries are applied on them. Therefore, for each 

complex change an appropriate SPARQL query is 

created through createQuery function call (line 5). 

For this, changes in     , constraints on their 

parameters and bindings are employed. Bindings 

indicate how to select complex change parameter 

values. Cardinality is taken into account to identify 

whether a change is optional. This query is 

executed on the detected change instances and 

dataset versions (line 6) in order to select change 

instances that verify the defined constraints. The 

query results are further elaborated, through 

createInstances function call (line 7), so that 

selected changes are grouped based on cardinality. 

Computed instances are added into the set of 

instances to be reported   (line 8, initialized in line 

1), and are combined with simple change instances 

in order to be available for detecting depending 

complex change instances (line 9). Finally, the 

algorithm returns the set of detected complex 

change instances   (line 11). 

Regarding query generation, testing value and 

relational constraints map to SPARQL filter 

expressions or nested queries with aggregation (in 

case they involve parameters evaluating into sets), 

while pre/post-conditions map to filter exists/not 

exists expressions over appropriate graphs holding 

the version before or after the change. Quantified 

expressions are also mapped to appropriate nested 

queries. Cardinality "?" and "*" map to optional 

declaration, indicating that respective changes may 

not be present. Bindings guide how query variables 

in select clause, representing complex change 

parameters, match query variables in where clause. 

Algorithm: Complex Change Detection 

Input: A set of complex changes  , a 

dataset version before    and after   , a 

set of simple change instances    

Output: A set of complex changes instances 

  of   
1        ; 
2  queue                   ; //complex 
changes are sorted following dependencies 

3  while !             do  

4                  ; 

5                                ; 

6                                  ; 

7                                  
        ; 

8          ; //report instances 
9            ; // instances are available 
for detecting depending changes 

10 end while 

11 return   ; 

Regarding instance generation, the query results 

have to be iterated so that they are grouped 

appropriately given cardinality constraints for 

constructing complex change instances. 

For example consider the following query, 

which corresponds to Add_Senior_Employee 

defined in Table 2. In the select clause we consider 

query variables corresponding to contained 

changes' identifiers (?c1, ?c2, ?c3, ?c4 and ?c5) 

and the values which will be assigned to the 

complex change instance parameters (?sx, ?m and 

?x). In the where clause we consider the changes 

defined in change list and the constraints defined in 

filter list. For Delete_Reference and Move_Project 

_Assignment we use optional parts, due to "*" 

cardinality constraint. For post-conditions we use 

appropriate SPARQL filter expressions evaluating 

over the graph holding Va. The first post-condition 

refers to Move_Project_Assignment and thus it is 

placed into the respective optional part. Also, it 

involves quantification, which is implemented 

through a nested query. The query results should 

be iterated for creating instances. Notice that 

Add_Employee and the first Add_Reference have 

cardinality equal to one. Thus, all rows having the 

same value in the respective query variables (?c1, 

?c2) will form one complex change instance. 
SELECT ?c1 ?sx ?c2 ?m ?c3 ?x ?c4 ?c5 

WHERE { ?c1 rdf:type ch:Add_Employee; 

ch:aep1 ?sx. 

?c2 rdf:type ch:Add_Reference; ch:ar1 

?sx; ch:ar2 ?m. 

FILTER EXISTS {GRAPH <http://employeeVa> 

{?m e:position e:Manager.}} 

?c3 rdf:type ch:Add_Reference; ch:ar1 

?x; ch:ar2 ?sx. 

OPTIONAL {?c4 rdf:type ch:Delete_ 

Reference; ch:dr1 ?x; ch:dr2 ?psx.} 

OPTIONAL {?c5 rdf:type ch:Move_Project_ 

Assignment; ch:mpap1 ?s; ch:mpap2 ?sx; 

ch:mpap3 ?v.{SELECT ?c5 WHERE{?c5 rdf:type 



 

ch:Move_Project_Assignment; ch:mpap1 ?s; 

ch:mpap2 ?sx. FILTER NOT EXISTS {GRAPH 

<http://employeeVa> {?s e:refersTo 

?sx.}}}GROUP BY ?c5 HAVING(count(?s)=0)}}} 

6 CONCLUSIONS 

In this paper we argued that treating changes as 

first class citizens is a central issue in evolution 

management. This involves modelling, defining 

and detecting complex changes. Thus semantically 

rich changes and their interrelations are supported 

for interpreting evolution in multiple ways. We 

proposed our perception regarding complex 

changes, a declarative language for defining them 

on RDF(S) knowledge bases and a process for 

detecting complex change instances. Future work 

is directed in evaluating our approach in terms of 

language expressiveness and detection efficiency. 

ACKNOWLEDGEMENTS 

Supported by the EU-funded ICT project 

"DIACHRON" (agreement no 601043). 

REFERENCES 

Auer, S., H. Herre, 2007. A versioning and evolution 

framework for RDF knowledge bases. In 

Perspectives of Systems Informatics. 

Berners-Lee, Τ., Connolly, D., 2004. Delta: An ontology 

for the distribution of differences between RDF 

graphs.http://www.w3.org/DesignIssues/Diff 

(version: 2006-05-12). 

Franconi, E., Meyer, T., Varzinczak. I., 2010. Semantic 

diff as the basis for knowledge base versioning. In 

NMR. 

Galani, T., Stavrakas, Y., Papastefanatos, G., Flouris, G., 

2015. Supporting Complex Changes in RDF(S) 

Knowledge Bases. In MEPDaW-15. 

Klein, M., 2004. Change management for distributed 

ontologies. Ph.D. thesis, Vrije University.  

Noy, N.F., Musen, M., 2002. PromptDiff: A fixed-point 

algorithm for comparing ontology versions. In 

AAAI.  

Papastefanatos, G., Stavrakas, Y., Galani, T., 2013. 

Capturing the history and change structure of 

evolving data. In DBKDA. 

Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, 

D., Christophides, V., 2013. High-level change 

detection in RDF(S) KBs. In ACM Trans. Database 

Syst., 38(1).  

Plessers, P., De Troyer, O., Casteleyn, S., 2007. 

Understanding ontology evolution: A change 

detection approach. In J. Web Sem. 5(1): 39-49.  

Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G., 

Stavrakas, Y., 2015. A flexible framework for 

understanding the dynamics of evolving RDF 

datasets. In ISWC.  

Stojanovic, L., 2004. Methods and tools for ontology 

evolution. Ph.D. thesis, University of Karlsruhe.  

Volkel, M., Winkler, W., Sure, Y., Kruk, S., Synak, M., 

2005. SemVersion: A versioning system for RDF 

and ontologies. In ESWC. 

Zeginis, D., Tzitzikas, Y., Christophides, V., 2011. On 

computing deltas of RDF/S knowledge bases. In 

ACM Transactions on the Web. 

APPENDIX 

Simple Changes on RDF(S) Knowledge Bases. 

Add_Type_Class(a): Add object a of type rdfs:class. 

Delete_Type_Class(a): Delete object a of type rdfs: class. 

Rename_Class(a): Rename class a to b. Merge_Classes(A, 

b): Merge classes contained in A into b. Merge_Classes_ 

Into_Existing(A,b): Merge classes in A into b, bA. Split_ 

Class(a,B): Split class a into classes contained in B. Split_ 

Class_Into_Existing(a,B): Split class a into classes in B, 

aB. Add_Type_Property(a): Add object a of type 

rdf:property. Delete_Type_Property(a): Delete object a of 

type rdf:property. Rename_Property(a,b): Rename 

property a to b. Merge_Properties(A,b): Merge properties 

contained in A into b. Merge_Properties_Into_Existing(A, 

b): Merge A into b, bA. Split_Property(a,B): Split 

property a into properties contained in B. Split_Property_ 

Into_Existing(a,B): Split a into properties in B, aB. Add_ 

Type_Individual(a): Add object a of type rdfs:resource. 

Delete_Type_Individual(a): Delete object a of type rdfs: 

resource. Merge_Individuals(A,b): Merge individuals 

contained in A into b. Merge_Individuals_Into_Existing 

(A,b): Merge A into b, bA. Split_Individual(a,B): Split 

individual a into individuals in B. Split_Individual_Into_ 

Existing(a,B): Split a into individuals in B, aB. Add_ 

Superclass(a,b): Parent b of class a is added. Delete_ 

Superclass(a,b): Parent b of class a is deleted. Add_ 

Superproperty(a,b): Parent b of property a is added. 

Delete_Superproperty(a,b): Parent b of property a is 

deleted. Add_Type_To_Individual(a,b): Type b of 

individual a is added. Delete_Type_From_Individual(a,b): 

Type b of individual a is deleted. Add_Property_Instance 

(a1,a2,b): Add property instance of property b. Delete_ 

Property_Instance(a1,a2,b): Delete instance of property b. 

Add_Domain(a,b): Domain b of property a is added. 

Delete_Domain(a,b): Domain b of property a is deleted. 

Add_Range(a,b): Range b of property a is added. Delete_ 

Range(a,b): Range b of property a is deleted. Add_ 

Comment(a,b): Comment b of object a is added. Delete_ 

Comment(a,b): Comment b of object a is deleted. Change_ 

Comment(u,a,b): Change comment of resource u from a to 

b. Add_Label(a,b): Label b of object a is added. Delete_ 

Label(a,b): Label b of object a is deleted. Change_ 

Label(u,a,b): Change label of resource u from a to b. 


