
An Infrastructure for Manipulating Multidimensional

Semistructured Data

Vassilis Zafeiris1, Christos Doulkeridis1, Yannis Stavrakas1;2, and Manolis Gergatsoulis2;3

1 Knowledge & Database Systems Laboratory

National Technical University of Athens (NTUA), 15773 Athens, Greece.

2 Institute of Informatics & Telecommunications,

National Centre for Scienti�c Research (N.C.S.R.) `Demokritos',

15310 Aghia Paraskevi Attikis, Greece.

3 Department of Archives and Library Sciences,

Ionian University, 49100 Corfu, Greece.

fbzafiris,cdoulkg@aueb.gr

fystavr,manolisg@iit.demokritos.gr

Abstract. Multidimensional Semistructured Data (MSSD) are semistructured data that

present di�erent facets under di�erent contexts (i.e. alternative worlds). For the representa-

tion of MSSD various formalisms have been proposed by the authors, both syntactic (such

as mssd-expressions and MXML) as well as graphical (such as Multidimensional OEM). In

this paper we present an infrastructure for handling MSSD. This infrastructure provides

appropriate tools for building MSSD applications, and is independent from any particular

application that uses it. We also present a graphical interface, called MSSDesigner, that

provides access to the infrastructure, and we describe OEM History, an MSSD application

that supports keeping track of temporal changes in semistructured databases.

Keywords: Semistructured Data, OEM Graph, OEM History, Multidimensional Semistruc-

tured Data, MOEM Graph.

1 Introduction

The nature of the Web poses a number of new problems [4]. While in traditional databases and

information systems the number of users is more or less known and their background is to a

great extent homogeneous, Web users do not share the same background and do not apply the

same conventions when interpreting data. Such users can have di�erent perspectives of the same

entities, a situation that should be taken into account by Web data models. Those problems call

for a way to represent information entities that manifest di�erent facets, whose contents can vary

in structure and value.

Multidimensional Semistructured Data (MSSD) paired with an extension of OEM called multi-

dimensional OEM, have been proposed in [9]. MSSD and MOEM incorporate ideas from multidi-

mensional programming languages [3] and associate data with dimensions, in order to tackle the

aforementioned problems. In MSSD, variants of the same information entities, each holding under

a speci�c world, have been consolidated to form multidimensional entities. Syntactic expressions

called context speci�ers are associated to pieces of data (facets of multidimensional entities), and

specify sets of worlds under which these data hold.

In this paper, we present the overall architecture of an infrastructure that allows the manage-

ment of multidimensional semistructured data. This infrastructure can be used for the development

of new applications and MSSD tools that will be placed on top of it, by providing access to a number

of operations on MSSD. We focus mainly on MOEM graphs that can be used to represent MSSD

and we present MSSDesigner, a graphical interface for handling MOEM graphs, which is also a

part of the infrastructure. Moreover, we present an interesting application concerning MSSD, called

OEM History, that deals with accommodating temporal changes in semistructured databases.

The rest of the paper is organized as follows. In section 2, we present the basic notions behind

multidimensional semistructured data. In section 3, an overview of the MSSD infrastructure is

given. In section 4, we discuss the basic component of the infrastructure, which is the Multidi-

mensional Data Manager. In section 5 we present MSSDesigner, a graphical interface for handling

MOEM graphs. Section 6 presents OEM History, an application for accommodating changes in

semistructured databases. Finally, in section 7 we conclude the paper.

2 Multidimensional Semistructured Data

Multidimensional semistructured data (MSSD in short) [9] are semistructured data [1, 10] which

present di�erent facets under di�erent contexts (or sets of worlds). Information entities that assume

di�erent facets are called multidimensional entities. Each facet is associated with a context that

de�nes the conditions under which that facet holds.

2.1 Contexts and Dimensions

The notion of world is fundamental in MSSD. A world represents an environment under which

data obtain a substance. In the following de�nition, we specify the notion of world using a set of

parameters called dimensions.

De�nition 1. Let D be a set of dimension names and for each d 2 D, let V
d
be the domain of d,

with V
d
6= ;. A world w with respect to D is a set whose elements are pairs (d; v), where d 2 D

and v 2 V
d
, such that for every dimension name in D there is exactly one element in w.

2

The main di�erence between conventional and multidimensional semistructured data is the in-

troduction of context speci�ers. Context speci�ers are syntactic constructs, expressing constraints

on dimension values, that are used to qualify semistructured data expressions (ssd-expressions) [1]

and specify sets of worlds under which the corresponding ssd-expressions hold. In this way, it is

possible to have at the same time variants of the same information entity, each holding under

a di�erent set of worlds. An information entity that encompasses a number of variants is called

multidimensional entity, and its variants are called facets of the entity. The facets of a multidimen-

tional entity may di�er in value and / or structure, and can in turn be multidimensional entities

or conventional information entities. Each facet is associated with a context that de�nes the con-

ditions under which the facet becomes a holding facet of the multidimensional entity. If a facet f

of a multidimensional entity e holds under a world w (or, under every world de�ned by a context

speci�er c), then we say that e evaluates to f under w (under c, respectively).

Example 1. The use of dimensions for representing worlds is shown with the following three context

speci�ers:

(a) [time in {07:00..15:00}]

(b) [language=greek, detail in {low,medium}]

(c) [season in {fall,spring}, daytime=noon | season=summer]

In Example 1, context speci�er (a) represents the worlds for which the dimension time can

take any value between 07:00 and 15:00, while (b) represents the worlds for which language is

greek and detail is either low or medium. Context speci�er (c) is more complex, and represents

the worlds where season is either fall or spring and daytime is noon, together with the worlds

where season is summer. Notice that, according to De�nition 1, for a set of (dimension; value) pairs

to represent a world with respect to a set of dimensions D, it must contain exactly one pair for each

dimension in D. Therefore, if D = flanguage; detailg with V
language

= fenglish; greekg and

V
detail

= flow; medium; highg, then f(language; greek); (detail; low)g is one of the six possible

worlds with respect to D. This world is represented by context speci�er (b) in Example 1, together

with the world f(language; greek); (detail; medium)g.

Notice that it is not necessary for a context speci�er to contain values for every dimension in

D. Omitting a dimension implies that its value may range over the whole dimension domain. The

context speci�er [] is called universal context and represents the set of all possible worlds with

respect to a set of dimensions D.

3

2.2 Multidimensional OEM

Multidimensional Object Exchange Model (MOEM) is an extension of Object Exchange Model

(OEM) [2] suitable for representing multidimensional data. MOEM extends OEM with two new

basic elements:

{ Multidimensional nodes represent multidimensional entities, and are used to group together

nodes that constitute facets of such entities. Graphically, multidimensional nodes have a rect-

angular shape to distinguish them from conventional circular nodes, which are called context

nodes.

{ Context edges are directed labeled edges that connect multidimensional nodes to their facets.

The label of a context edge pointing to a facet p, is a context speci�er de�ning the set of

worlds under which p holds. Context edges are drawn as thick lines, to distinguish them from

conventional (thin-lined) edges, called entity edges.

The existence of two kinds of nodes and two kinds of edges raises the question of which node

- edge combinations are meaningful. Starting with what is not legal, a context edge cannot start

from a context node, and an entity edge cannot start from a multidimensional node. Those two

are the only constraints on the morphology of an MOEM graph.

Note that, as in OEM, a context node can be complex or atomic, depending on whether it has

outgoing edges or not. Atomic nodes are leaves and have an atomic value of some prede�ned type

(integer, string, etc).

An MOEM is de�ned as a context-deterministic multidimensional data graph. By context-

deterministic, we mean a graph whose context edges that depart from the same multidimensional

node have labels (context speci�ers) that are mutually exclusive (de�ne disjoint sets of worlds).

In a context-deterministic graph, each multidimensional entity may evaluate to at most one facet

under any given world. The de�nition of multidimensional data graph is given below.

De�nition 2. Let C be a set of context speci�ers, L be a set of labels, and A be a set of atomic val-

ues. A multidimensional data graph is a �nite directed edge-labeled multigraph G = (V;E; r; C;L;A; v),

where:

1. The set of nodes V is partitioned into multidimensional nodes and context nodes V = V
mld

[

V
cxt

. Context nodes are further divided into complex nodes and atomic nodes V
cxt

= V
c
[V

a
.

2. The set of edges E is partitioned into context edges and entity edges E = E
cxt

[E
ett
, such

that E
cxt

� V
mld

� C � V and E
ett
� V

c
�L � V .

3. r 2 V is the root, with the property that there exists a path from r to every other node in V .

4

4. v is a function that assigns values to nodes, such that: v(x) = M if x 2 V
mld

, v(x) = C if

x 2 V
c
, and v(x) = v0(x) if x 2 V

a
, where M and C are reserved values, and v0 is a value

function v0 : V
a
! A which assigns values to atomic nodes.

[lang=fr] [season in
{fall,winter,spring}]

&1

&3

&12 &13
&11

&10
&15

&4

&14

[season=summer]

address

city
city

streetstreet

review
name

zipcode

music_club

parking

&23

&22

&6

[daytime=noon]

[daytime=evening]
&9&7

&2

[lang=gr]

&8

[lang=en]

menu

"Athens"

6

&17&16

&20

&5

[detail=high]

score
commentsscore

[detail=low]

&18
&19

[lang=en]

[lang=gr]

&21

Fig. 1. A multidimensional music-club.

As an example consider the (part of an) MOEM graph in Figure 1 which represents context-

dependent information about a music-club. The graph is not fully developed and some of the atomic

objects do not have values attached. The music club with oid &1 operates on a di�erent address

during the summer than the rest of the year (in Athens it is not unusual for clubs to move south

close to the sea in the summer period, and north towards the city center during the rest of the

year). Except from having a di�erent value, context objects can have a di�erent structure, as is the

case of &10 and &15 which are variants of the multidimensional object address with oid &4. The

menu of the club is available in three languages, namely English, French and Greek. In addition,

the club has a couple of alternative parking places, depending on the time of day as expressed by

the dimension daytime.

Two fundamental concepts related to multidimensional data graphs are the notions of explicit

and inherited contexts. The explicit context of a context edge is the context speci�er assigned to

that edge, while the explicit context of an entity edge is the universal context speci�er []. The

explicit context can be considered as the \true" context only within the boundaries of a single

multidimensional entity. When entities are connected together in an MOEM graph, the explicit

context of an edge is not the \true" context, in the sense that it does not alone determine the

worlds under which the destination node holds. The reason for this is that, when an entity e2 is

part of (pointed by through an edge) another entity e1, then e2 can have substance only under

the worlds that e1 has substance. This can be conceived as if the context under which e1 holds is

5

inherited to e2. The context propagated in that way is combined with (constraint by) the explicit

context of each edge to give the inherited context for that edge. In contrast to edges, nodes do

not have an explicit context; like edges, however, they do have an inherited context. The inherited

context of a node or edge is the set of worlds under which the node or edge is taken into account,

when reducing the MOEM graph to a conventional OEM graph (as explained later in section 4).

Multidimensional entities are not obliged to have a facet under every possible world. However,

they must provide enough coverage to give substance to each incoming edge under at least one

world. The notion of validity of an MOEM graph ensures that edges pointing to multidimensional

nodes do not exist in vain. In particular, an edge h leading to a node q is invalid if the inherited

context of h has no common world with the context union of the worlds represented by the explicit

contexts of the edges that depart from q.

2.3 Multidimensional XML

Besides MOEM which models MSSD as a graph, a notation for expressing MSSD has been also

proposed in [9]. The notation extends ssd-expression [1] with context speci�ers, and is called mssd-

expression. Another way to describe MSSD is Multidimensional XML (MXML) [7, 6] which is an

extension of XML that incorporates context speci�ers [6]. In MXML, elements and attributes may

depend on a number of dimensions. A multidimensional element is denoted by preceding its name

with the special symbol \@", and encloses one or more context elements that constitute facets of

that multidimensional element, holding under the worlds speci�ed by the corresponding context

speci�er. Context elements have the same form as conventional XML elements.

MXML suggests a new way for designing Web pages which encode context-dependent data. We

refer to the new paradigm asmultidimensional paradigm [6]. The multidimensional paradigm allows

a single document to have a number of variants, each holding under a speci�c world. Information

in such a document is encoded in MXML. Once a world is speci�ed, such an MXML document can

be reduced to a conventional XML document that constitutes the holding facet under that world.

An MXML document may be associated with a Multidimensional XSL stylesheet (MXSL in short)

containing instructions on how to present information in XML documents. An MXSL stylesheet

encodes a set of conventional XSL stylesheets, each being the facet of the MXSL under a speci�c

world. For each possible world, the holding XSL is applied to the holding XML to give the view of

the information under that world.

6

3 Architecture of an MSSD Infrastructure

An MSSD infrastructure is a set of tools and processes that create, manipulate, and query MSSD,

and are used directly, or by applications that need the support of an MSSD framework.

This section presents such an infrastructure for manipulating multidimensional semistructured

data, which can also be used for implementing additional tools and applications. The infrastructure

consists of the following components, depicted in Figure 2: MOEM Graph, Multidimensional Data

Manager, Manager GUI, Repository, Manager API.

Repository

MANAGER
API

Context
Operations

Inh.Context
Calculation

Graph
Validity

MXML
Parser

MSSD
Parser

Nat.Format
Parser

Update
Operations

MOEM
Reduction

Import/
Export

Query
Subsystem

OEM History
Application

MSSD-expr,
MXML,
Native Format

MANAGER
GUI

MULTIDIMENSIONAL DATA MANAGER

NEW
APPLICATIONS

Coordinator
MOEM Graph

Fig. 2. Architecture of an MSSD infrastructure

MOEM Graph consists of the main memory data structures which actually hold graph repre-

sentations of MSSD.

Multidimensional Data Manager (MDM) is responsible for managing MOEM graphs. It

comprises a set of modules that allow the creation, maintenance, and querying of multidimensional

semistructured data. Various modules of MDM can be accessed through graphical user interfaces

o�ered by the Manager GUI.

7

Manager GUI comprises a number of user interfaces, which provide access to various functions

of MDM, like MOEM graph creation and maintenance, and MOEM graph querying. MOEM graph

creation and maintenance can be performed through MSSDesigner, which is described in detail in

section 5.

Repository is the physical storage medium that supports the MDM needs for loading and sav-

ing MSSD and MOEM graph representations. Note that a number of formats able to represent

semistructured data can be used when storing MOEM in �les. At this moment, mssd-expressions,

MXML and Native Format expressions are supported.

Manager API aims at providing an application programming interface for new applications

that will need to use the functionality of the system. This module enables applications to use the

existing infrastructure by issuing commands in an especially made script-like language. However,

an application can directly use the MDM, as is the case of OEM History, described in section 6.

4 Multidimensional Data Manager

Multidimensional Data Manager (MDM) is the most important component in Figure 2. It comprises

a set of utility processes which appear inside a box placed at the bottom of MDM in Figure 2 and

are accessible to all other MDM modules. Those utility processes are explained below.

4.1 General Purpose Functions

Context Operations, implements the necessary operations on context speci�ers de�ned in [9], in-

cluding context intersection (\
c
) and context union ([

c
). Context intersection and context union

correspond to conventional set operations on the set of worlds de�ned by the context speci�ers.

Speci�cally, if c1, c2 are context speci�ers and W
D
(c1), WD

(c2) are the sets of worlds they repre-

sent with respect to a set of dimensions D, then the context intersection c1 \c c2 gives a context

speci�er that represents the intersection of the worlds that c1 and c2 represent, i.e. WD
(c1\c c2) =

W
D
(c1) \W

D
(c2). Similarly, for the context union we have: W

D
(c1 [c c2) =W

D
(c1) [W

D
(c2).

Inherited Context Calculator is used in order to compute the inherited context of a graph. The

inherited context of a node p is given by a context speci�er ic
p
which is the context union of the

inherited contexts of the edges that lead to p. Let h be an edge that departs from node p. Then the

inherited context ic
h
of h is the context intersection of the inherited context of p with the explicit

context of h. Note that the root of an MOEM graph is assumed to hold under every possible world,

8

thus its inherited context is the universal context. For calculating the inherited context the graph

is traversed in a breadth-�rst manner, starting from the root.

The Graph Validator checks the validity of the graph.

Furthermore, there exist some processes that deal with parsing expressions in various formats,

namely MSSD Parser, MXML Parser, and Native Format Parser, which parse mssd-expressions,

MXML, and native MOEM expressions respectively. Except for the utility processes, MDM consists

of a number of modules that are described in the following sections.

4.2 Coordinator

External components communicate with MDM through the coordinator. Its job is to decompose

incoming requests into a number of basic operations, and to assign these operations to appropriate

modules in MDM.

As an example, consider the case of a user of a graphical interface who removes an edge from

an MOEM graph through a graphical interface. The coordinator accepts the request from Manager

GUI, and diverts it to the Update Operations module, which is responsible for carrying out such

modi�cations. After that, the coordinator noti�es the corresponding GUI to display the updated

graph.

4.3 Update Operations Module

Modi�cations of an MOEM graph are carried out by this module, which implements the following

basic change operations:

createCNode(cid, val): a new context node is created. The identi�er cid is new and the value

val can be an atomic value of some type, or the reserved value C, that denotes a complex object.

updateCNode(cid, val): changes the value of cid to val. The node must not have any outgoing

arcs.

createMNode(mid): a new multidimensional node is created with the new identi�er mid.

addEEdge(cid, l, id): creates a new entity edge with label l from context node cid to node

id.

remEEdge(cid, l, id): removes the entity edge (cid; l; id) from the MOEM graph.

addCEdge(mid, context, id): creates a new context edge labeled with the context speci�er

context from multidimensional node mid to node id.

remCEdge(mid, context, id): removes the context edge (mid; context; id) from the MOEM

graph.

As in conventional OEM, in MOEM object deletion is achieved through arc removal, since the

persistence of an object is determined by whether or not the object is reachable from the root.

9

4.4 Import/Export Module

An MOEM graph can be encoded and stored in a �le in a number of di�erent formats. We have

used three di�erent formats namely mssd-expressions, Multidimensional XML and Native Format

expressions. The Import/Export module handles the storing and the loading processes concerning

a graph and all the di�erent representations that describe it.

MSSD-Expressions The grammar of mssd-expressions is given in Extended Backus-Naur Form

(EBNF) in [9]. Here we give as an example the mssd-expression that describes the address object

with oid &4 in Figure 1:

&4 ([season=summer]:

&10 {zipcode: &11,

street: &12,

city: &14 "Athens"},

[season in {fall,winter,spring}]:

&15 {city: &14,

street: &13})

MXML Representations MXML has been de�ned in [7]. The following MXML extract describes

the same address object as the above mssd-expressions example:

<@address>

[season=summer]

<address>

<zipcode>...</zipcode>

<street>...</street>

<city id="c1"> Athens </city>

</address>

[/]

[season in {fall,winter,spring}]

<address>

<city idref="c1" />

<street>...</street>

</address>

[/]

</@address>

10

Native Format Expressions Native format expressions are used to describe MOEM graphs, and

have the property to retain the exact position of the graph nodes. They are formed by describing

every node with a line of the form:

[nodeId, nodeType, xPos, yPos, value, isRoot, bHung]

where nodeId is the node identi�er, nodeType is the node type (atomic, complex, multidimen-

sional), xPos and yPos its coordinates on the screen, value its value. isRoot is true if the node is

the root, and bHung is true if the node is not reachable from the root. Every edge is described with

a line of the form:

(fromNode; toNode; edgeType; value)

where fromNode is the starting node, toNode is the destination node, edgeType speci�es if the

edge is context edge or entity edge, and value contains the edge's explicit context (for context

edges) or its label (for entity edges).

4.5 MOEM Reduction Module

This module is responsible for two jobs: (a) reduction of a MOEM graph to a conventional OEM

graph holding under a speci�c world, and (b) partial reduction of a MOEM graph to another

MOEM graph holding under a set of worlds.

Reduction to OEM Given a speci�c world, it is always possible to reduce an MOEM graph to a

conventional OEM graph holding under that world. By specifying di�erent worlds, the sameMOEM

can be reduced to di�erent OEMs. The graph to be reduced must be context deterministic, i.e. for

every multidimensional entity in the graph the context speci�ers of that entity must be mutually

exclusive. This ensures that two di�erent facets of a multidimensional entity cannot hold under the

same world. A procedure which performs reduction to OEM is presented below, and it is based on

the idea that inherited contexts identify the parts of the graph that do not hold under a world.

The facet of an MOEM graph G under a world w, is an OEM graph G
w
that holds under w.

Given a world w expressed as a context speci�er c
w
, the graph G

w
can be obtained from G through

the following process:

Procedure reduce to OEM (G; c
w
; G

w
) is

Step 1: Remove every node and edge with c
w
\
c
ic = ;

c
, where ic gives the inherited context of

the node or edge respectively.

Step 2: For every entity edge (p; l;m1) with m1 a multidimensional node, follow the path of

consecutive context edges (m1; c1;m2),. . . ,(mn
; c

n
; q), n � 1, until no more context edges can be

followed. Then, if q is a context node add a new entity edge (p; l; q) in the set of entity edges.

11

Step 3: Remove all multidimensional nodes. Remove all edges departing from or leading to the

removed nodes.

As an example, consider the OEM graph in Figure 3 obtained by applying the reduction to OEM

procedure on the MOEM graph of Figure 1 for the world w = f(season; summer), (daytime; noon),

(lang; gr), (detail; low)g.

&1

w = {(season,summer),
(daytime,noon),

(lang,gr),(detail,low)}

music_club

&7

&3

&10

&11

&12

&14

&16

&18

&23

menu

name
address

zipcode
street

city

review

score

parking

OEM Instance

Fig. 3. The OEM instance, holding under the world w, of the MOEM graph in Figure 1.

Partial Reduction Partial reduction is in fact a generalization of the procedure reduce to OEM

given above. In partial reduction a context speci�er that represents a set of (generally more than

one) worlds is given. The MOEM graph is reduced to a new MOEM graph containing only the nodes

and edges that hold under any of the speci�ed worlds. In order to obtain the reduced MOEM graph

the inherited context of nodes and edges is used, and a process similar to step 1 of reduce to OEM

is performed.

4.6 Query Subsystem Module

Multidimensional Query Language (MQL) is a query language for MOEM databases. It resembles

to query languages for semistructured data like Lorel, but incorporates context speci�ers in path

expressions, and additional clauses in queries that cater for context operations. MQL has been

speci�ed and is currently being implemented. The query module is responsible for executing MQL

queries on an MOEM graph and producing new MOEM graphs as a result.

12

Fig. 4. A sample image of MSSDesigner.

5 MSSDesigner

The infrastructure described in Figure 2 has been implemented, except from the Query Subsystem

and the Manager API, which are under development.MSSDesigner is a graphical interface (part of

the Manager GUI) that gives access to the functionality of MDM. A sample image of MSSDesigner

displaying a simple graph about a multidimensional music club is depicted in Figure 4.

MSSDesigner employs a multi-document interface (MDI) where each document-frame corre-

sponds to a data graph. All the operations, performed by the various control buttons of the ap-

plication, have e�ect to the currently focused frame. The control buttons of MSSDesigner are

positioned in two toolbars placed in the upper and left sides of the main window. The toolbar on

the left side contains buttons performing the basic operations that modify the structure and layout

of the graph. Beginning from the top of the toolbar, the arrow-labeled button allows the multiple

selection and transposition of nodes in the display area. The following �ve buttons correspond to

the MOEM basic change operations for adding and updating nodes, and adding and removing

edges. The last button performs consistency check of the graph, and removes nodes that are not

accessible from the root.

The upper toolbar contains seven buttons. The �rst one creates a new window for designing an

MOEM graph. The second button corresponds to the import operation concerning Native Format

13

Expressions, whereas the next button exports the graph contained in the focused window as a

Native Format Expression. The button with the tick symbol calls the Graph Validator module to

check the validity of the graph, while the next button is used to reduce the MOEM graph to an OEM

graph holding under a given world. Partial reduction can be performed through the application

menu. In order to display or hide the explicit contexts and labels on edges, the following button

is used. Finally, the last button calls the Inherited Context Calculator, and causes the inherited

contexts to appear on the screen. An alternative way of performing the aforementioned operations

is via the menu bar of the application.

Through MSSDesigner it is possible to import a graph from an MSSD expression or MXML

representation, and export a graph to one of those formats. These operations are activated by the

File Import/Export menus respectively. Native format imprint the position of nodes as well, and

is useful for saving and loading un�nished graphs, as the process of saving and loading in native

format does not perform consistency checking, and consequently it does not remove hanging nodes

and subgraphs. Note that the graph is always checked for consistency when importing or exporting

MSSD expressions or MXML.

MSSDesigner has been implemented in Java (requires JDK 1.3.1), and is available at:

http://www.dbnet.ece.ntua.gr/�ys/moem/moem.html

6 An Application Example: OEM History

As stated in [8], MOEM can be used to keep track of changes over time, in OEM databases. The

process is as follows. The necessary operations for changing an OEM are addNode, updateNode,

addEdge, and removeEdge, as stated in [5]. Each OEM basic change operation is associated with a

timestamp and is trapped to a sequence of MOEM operations, in such a way that new facets of an

object are created in MOEM, whenever an object changes in OEM. MOEM facets are associated

with contexts comprised of a dimension d whose domain is time. In this way, the resulting MOEM

represents the history of the OEM database.

OEM History is an example application that uses the MSSD infrastructure, depicted in Figure 2,

in order to represent histories of semistructured databases. OEM History uses directly the MDM

subsystem, and the general architecture of the application is shown in Figure 5.

The user interacts with the graphical interface of the application, which employs a MDI (Multi

Document Interface). Each document-frame of the application depicts a graph corresponding to

the current database state, the history representation of the database, or to database snapshots

at previous time instances. The history of the database is represented by an MOEM graph, which

is the only graph maintained internally by the application. Coexistence of more than one MOEM

14

OEM History GUI
Transformation

module

MDM

Database history
MOEM graph

User requests

OEM basic
change

operations

MOEM basic
change

operations

Import/Export/
Reduction
requests

Fig. 5. Architecture of OEM History application.

graphs in the same application instance is not allowed, as OEM History tracks the history of a

single database. The graph depicting the current state of the database and the graphs depicting

database snapshots, are OEM graphs produced by reducing the MOEM graph for a world de�ned

by specifying a time instance for the dimension d.

The user cannot directly a�ect the MOEM graph or the database snapshot graph. It is only

allowed to modify the OEM graph which corresponds to the current state of the database. Mod-

i�cations take place through OEM basic change operations, initiated from the user interface. Re-

quested OEM operations are passed to the "Transformation module" and are mapped to MOEM

basic change operations, that incorporate the current snapshot of the database as a new facet into

the MOEM graph. The operations are applied to the MOEM graph by the MDM subsystem.

A screenshot of the OEM History's main window is presented in Figure 6. The functionality of

the application, as well as concepts concerning its theoretical background will be explained by the

use of an example. The example refers to a database of a company that records its employees and

their salaries. Figure 6 presents the database in its initial state. The left frame shows the current

state of the database while the right shows the MOEM representation of its history. Notice that,

except node 0, the two graphs are identical, as no changes have occurred yet to the database.

The changes to the database are initiated from buttons located in the left toolbar of the main

window, as well as from the menu. The button with the arrow allows the multiple selection of nodes

15

Fig. 6. The main window of OEM History depicting the initial state of the database.

and their transposition on the design area. The following four buttons correspond to the four OEM

basic change operations. The 'tick' button performs coherence check of the graph, removing nodes

that are not accessible from the root of the OEM database. Finally, the last button marks the end

of a sequence of basic change operations and commits all changes to the database under a common

timestamp. Notice that the toolbar is active, only when the graph representing the current state

of the database is focused.

The upper toolbar contains buttons that load or save the database and its history. It also

contains a button that creates snapshots of the database at previous time instances by reducing

the MOEM graph to OEM. Those actions are executed by submitting appropriate requests to

MDM.

Figure 7, depicts the MOEM history graph after updating 'Salary' to value 2000 at timestamp

10. The comparison of MOEM graphs in Figures 6 and 7, gives an intuition of the MOEM basic

change operations that correspond to an update operation on the OEM database. Speci�cally, the

'Salary' atomic node is surrogated by a multidimensional node that groups together its new and

previous facets. Node 5 holds for timestamps before 10 while node 7 for timestamps after 10.

In Figure 8, a new employee called Peter is registered in the database at timestamp 20. The

right frame shows the history graph after the changes have been committed to the database.

The new elements added to the graph are: a new 'Company' facet with two employees and a

16

Fig. 7. Update of the 'Salary' attribute to value '2000' at d = 10.

multidimensional node that surrogates the initial 'Company' sub-graph with its alternative facets

before and after timestamp 20. This procedure will be repeated in case a new employee is added or

removed from the database. Figure 9 shows the MOEM graph after updating the salary of Peter

to 4000 at d = 30, and subsequently removing employee Peter from the database at d = 40. The

left part of Figure 9 shows a snapshot of the database at timestamp d = 5. The OEM graph is

identical to the initial state of the database as the �rst change took place at timestamp 10.

OEM History is implemented in Java (requires JDK 1.3.1) and is available at:

http://www.dbnet.ece.ntua.gr/�ys/moem/moem.html

7 Conclusions

In this paper we proposed an architecture for manipulating MSSD that can be used as an infras-

tructure for the development of new MSSD tools and applications. We showed the capabilities of

this infrastructure and we presented MSSDesigner, a graphical user interface for designing MOEM

graphs, that is a part of the GUI of this infrastructure. Furthermore we explained how a new

application can exploit this functionality, and we presented OEM History, an application that uses

the infrastructure and aims at accommodating temporal changes in semistructured databases.

We believe that MOEM has a lot of potential, and can be used in a variety of �elds, among

which: in information integration, for modeling objects whose value or structure vary according to

sources; in digital libraries, for representing metadata that conform to similar formats; in repre-

senting geographical information, where possible dimensions could be scale and theme.

17

Fig. 8. The database after the insertion of a new employee at d = 20

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured Data

and XML. Morgan Kaufmann Publishers, 2000.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query Language for

Semistructured Data. International Journal on Digital Libraries, 1(1):68{88, 1997.

3. E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge. Multidimensional programming.

Oxford University Press, 1995.

4. Ph. A. Bernstein, M. L. Brodie, S. Ceri, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, J. Gray,

G. Held, J. M. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J. F. Naughton, H. Pirahesh, M. Stone-

braker, and J. D. Ullman. The Asilomar Report on Database Research. SIGMOD Record, 27(4):74{80,

1998.

5. S. S. Chawathe, S. Abiteboul, and J. Widom. Managing historical semistructured data. Theory and

Practice of Object Systems, 24(4):1{20, 1999.

6. M. Gergatsoulis, Y. Stavrakas, D. Karteris, A. Mouzaki, and D. Sterpis. A Web-based System for

Handling Multidimensional Information through MXML. In A. Kaplinskas and J. Eder, editors, Ad-

vances in Databases and Information Systems (ADBIS' 01), Proceedings, Lecture Notes in Computer

Science (LNCS), Vol. 2151, pages 352{365. Springer-Verlag, 2001.

7. M. Gergatsoulis, Y. Stavrakas, and D. Karteris. Incorporating dimensions to XML and DTD. In H. C.

Mayr, J. Lanzanski, G. Quirchmayr, and P. Vogel, editors, Database and Expert Systems Applications

(DEXA' 01), Munich, Germany, September 2001, Proceedings, Lecture Notes in Computer Science

(LNCS), Vol. 2113, pages 646{656. Springer-Verlag, 2001.

18

Fig. 9. The MOEM database after the update of Peter's salary to 4000 at d = 30 and the removal of

employee Peter at d = 40. On the left, snapshot of the database at timestamp 5.

8. Y. Stavrakas, M. Gergatsoulis, C. Doulkeridis, and V. Zafeiris. Accomodating changes in semistruc-

tured databases using multidimensional OEM. In Advances in Databases and Information Systems

(ADBIS' 02), Proceedings, Bratislava, Slovakia, September 2002 (to appear).

9. Y. Stavrakas and M. Gergatsoulis. Multidimensional Semistructured Data: Representing context-

dependent information on the web. In Proceedings of the 14th International Conference on Advanced

Information Systems Engineering, Toronto, Ontario, Canada, May 2002, Lecture Notes in Computer

Science (LNCS), Vol. 2348, pages 183{199, Springer-Verlag, 2002.

10. D. Suciu. An overview of semistructured data. SIGACT News, 29(4):28{38, December 1998.

19

