Multidimensional XML*
(Extended Abstract)

Yannis Stavrakas®, Manolis Gergatsoulis, and Panos Rondogiannis?

! Institute of Informatics & Telecommunications,
National Centre for Scientific Research (N.C.S.R.) ‘Demokritos’,
153 10 Aghia Paraskevi Attikis, Greece.
{ystavr,manolis}@iit.demokritos.gr
2 Department of Computer Science
University of Ioannina,

P.O. Box 1186, GR45110, Ioannina, Greece.

prondo@cs.uoi.gr

Abstract. The Extensible Markup Language (XML) tends to become
a widely accepted formalism for the representation and exchange of data
over the Web. A problem that often arises in practice is the representation
in XML of data that are context-dependent (for example, information
that exists in many different languages, in many degrees of detail, and so
on). In this paper we propose an extension of XML, namely MXML or
Multidimensional XML, which can be used in order to alleviate the prob-
lem of representing such context-dependent (or multidimensional) data.
Apart from its usefulness in the semistructured data domain, MXML
also reveals some new and promising research directions in the area of
multidimensional languages.

1 Introduction

The Extensible Markup Language (XML) [1,6,19,11] is a data description lan-
guage which tends to become standard for representing and exchanging data
over the Web. Although elegant and concise, the syntax of XML does not allow
for convenient representation of multidimensional information. Suppose that one
wants to represent in XML information that exists in different variations (for
example in different languages, in various degrees of detail, or in different time
points). With the current XML technology, a solution would be to create a dif-
ferent XML document for every possible variation. Such an approach however is
certainly not practical, because it involves excessive duplication of information
(especially if the number of variations is high and there exist large identical parts
that remain unchanged between variations).

* This work has been partially supported by the Greek General Secretariat of Research
and Technology under the project “Executable Intensional Languages and Intelligent
Applications in Multimedia, Hypermedia and Virtual Reality” of IITENEA’99, con-
tract no 99EA265.



In this paper we propose a solution to the above problem, based on ideas
that originate from the area of multidimensional programming languages [4, 14].
More specifically, we propose the language Multidimensional XML (MXML)
which extends traditional XML with the capability of representing context de-
pendent information in a compact way. The development of MXML was influ-
enced by the ideas behind the design of Intensional HTML [20,8,7]. In contrast
to IHTML, which aims at handling multidimensional information at a docu-
ment level, the goal of MXML is to provide a formalism for representing and
exchanging context-dependent data over the web. Apart from its applications in
the XML domain, the study of MXML revealed new ideas that are of interest in
the area of multidimensional languages.

2 Preliminaries

2.1 Extensible Markup Language

The basic component in XML is the element, which is a piece of data bounded
by matching tags (markup) of the form <element-name> and </element-name>,
called start-tag and end-tag respectively. Element names in XML are defined at
will so that they best represent data domains. Inside an element we may have
other elements, called subelements.

Markup encodes a description of the storage layout and the logical structure
of the document. An XML document [6, 19] consists of nested element structures,
starting with a root element. The data in the element are in the form of character
data, subelements, or attributes.

XML allows us to associate attributes with elements. Attributes in XML are
declared within element start tags and have the form of a sequence of name-
value pairs. The value of an attribute is always a string enclosed in quotation
marks. Unlike subelements, where a subelement with the same name can be
repeated inside an element, an attribute name may only occur once within a
given element.

Example 1 shows a piece of XML document that contains information about
a book.

Example 1. A sample XML document.

<bibliography>
<book isbn="12345678" publisher = "pbl">
<author>
<firstname> Manolis </firstname>
<lastname> Gergatsoulis </lastname>
</author>
<author>

<firstname> Panos </firstname>
<lastname> Rondogiannis </lastname>
</author>



<title> Multidimensional Programming Languages </title>
<price currency = "USD"> 100 </price>
<year> 2000 </year>

</book>

...other book elements ...

<publisher id = "pbl">

NCSR Demokritos
</publisher>
...other publisher elements ...

</bibliography>

In this example, the element book has the attributes isbn and publisher. It
also has five subelements. The first two represent the authors of the book, while
the rest represent the title, the price and the publication year of the book. The
attribute publisher of the book element refers to the publisher element.

A key feature of XML is the capability to specify the structure of XML doc-
uments through the use of Document Type Definitions (DTDs). A DTD declares
constraints on elements and attributes and can be viewed as a context free gram-
mar for XML documents, or as a kind of schema for XML data. A document
may refer to a DTD to which it conforms.

2.2 Multidimensional Formalisms

The idea of “dimension enabled” languages is not new. Possibly the first multidi-
mensional programming language is the (functional) language GLU [3,4]. GLU
allows the user to declare dimensions, and to define multidimensional entities
that vary across these dimensions. So, a two-dimensional entity can be thought
as an infinite table, a three-dimensional one as a cube extending infinitely across
the three dimensions, and so on. One can perform various operations with ar-
guments such higher-dimensional entities, or even define functions that take
them as parameters and return new entities as results. Moreover, the language
supports intensional operators that work along each different dimension. A lan-
guage in the spirit of GLU has also been developed in the logic programming
domain [14].

An area in which multidimensionality appears to offer significant benefits is
the area of version control [16]. The intensional versioning approach described
in [16] has recently found applications in the evolving area of Internet comput-
ing. One example application in this domain is the development of the language
IHTML (Intensional HTML) [20,8,7,18], a high-level Web authoring language.
The main advantage of IHTML over HTML is that it allows practical specifica-
tion of Web pages that can exist in many different variations. Web sites created
by IHTML are easier to maintain and require significantly less space when com-
pared to the sites created by cloning conventional HTML files.



Finally, we should mention the language ISE [17] which is a multidimensional
version of Perl. ISE is more general purpose than IHTML and it is expected to
have a broader range of applications.

3 Multidimensional XML

When modelling the real world, the same entity may often have multiple facets.
For example, a technical document concerning a car may vary according to the
language, the metric system (i.e. miles, or kilometres), the price currency, etc. of
the potential customer. In classical XML one has to write different XML docu-
ments, each one representing a possible variation. In multidimensional XML we
are allowed to specify elements that may exhibit varying content and structure,
by assigning them dimensions. This is done by extending the syntax of XML.

3.1 Syntax of Multidimensional XML Documents

A Multidimensional XML document (MXML document) is presented in exam-
ple 2.

Example 2. A sample multidimensional XML document:

<bibliography>
<book isbn="12345678" publisher = "pbl">
<author>
[language = English]
<firstname> Manolis </firstname>
<lastname> Gergatsoulis </lastname> [/]
[language = Greek]
<firstname> Moawvolns </firstname>
<lastname> ['cpyarToovAns</lastname> [/]
</author>
<author>
[language = English]
<firstname> Panos </firstname>
<lastname> Rondogiannis </lastname> [/]
[language = Greek]
<firstname>Il&vo¢</firstname>
<lastname> Povtoyidvvns </lastname> [/]
</author>
<title>

[language = English]
Multidimensional Programming Languages [/]
[language = Greek]
o véiaoTares ['Moooes Il poypappariopot [/]
</title>
<price currency= "USD">



[period = discount client = regular]

100 [/]
[period = normal client = regular]
120 [/]
[period in {discount, normal} client = speciall
100 [/]
</price>
<year> 1999 </year>
</book>

...other book elements ...

<publisher id = "pbl">
[language = English] NCSR Demokritos [/]
[language = Greek] EKE®E Anuokpiros [/]
</publisher>
...other publisher elements ...

</bibliography>

The document in example 2 is a multidimensional extension of the document
in example 1. The elements author and the elements title and publisher
have two versions each. One corresponding to the value English of the dimension
language and the other corresponding to the value Greek of the same dimension.

The element price depends on two dimensions namely period and client.
Notice that in general an element or an attribute may depend on zero, one or
more dimensions. The dimensions are considered orthogonal in the sense that
the value of one dimension does not depend on the values of another dimension.
Each dimension may be assigned to more than one elements or attributes.

By the term context we refer to a set of dimension-value pairs assigned to a
given element or attribute.

The syntax of XML is extended as follows in order to incorporate the use of
dimensions. In particular, an element in MXML has the form:

<element name attribute_specification>
[context_specifier_1]
element_contents_1

/1]

[context_specifier n]
element_contentsn

/1]

</element_name>



where element_contents i, with 1 < i < n is the contents of the element
for the context specified by context_specifier_i. Note that all the alternative
element_contents_i above, are within the same element “element name”. In
addition, all contents of an element must occur inside a context specifier; in other
words context specifiers cannot occur freely inside element contents, instead they
are “attached” to element names. A context specifier is of the form:

dimension_1_specifier,...,dimensionm specifier

where dimension_i_specifier, for i = 1 to m is a dimension specifier of the
form:

dimension name specifier_operator dimension value_expression

A specifier_operator is one of =, ! =, in, not in. If the specifier_operator is
either = or ! = then the dimension_value_expression consists of a single dimension
value. Otherwise, if the specifier_operator is one of in, not in then the dimension
value expression is a set of the form {valuey,...,valuex}, with k > 1.

For example the following expressions are valid context specifiers:

[language in {Greek, English, French}]
[language = Greek]
[language != French]

Note that we assume that the dimension-value expressions that correspond
to a specific element must be formulated in such a way so as no two of them are
concurrently satisfied.

An attribute may also depend on dimensions, in which case, the syntax is
similar to that of elements. Thus, the attribute_specification is of the form:

attribute name =
[context_specifier_1]
attribute_value_1

/1]

[context_specifier n]
attribute valuen

/1]

4 On the Semantics of MXML

In this section, we discuss in brief some points related to the semantics of MXML.



4.1 Scoping of Dimensions

A dimension assigned a value in an element retain its value in all the descendant
elements of this element. However, if a dimension which has been assigned a
value in an element E, is assigned a new value in a descendant E1 of E, then
the active value of that dimension for E1 and its descendants is the value of the
dimension assigned in element E1.

Dimensions for attributes are independent of the dimensions of elements.
Moreover, the values of the dimensions of an attribute apply only to the specific
attribute.

4.2 Multidimensional OEM

Object Exchange Model (OEM) is a simple graph-based data model for semistruc-
tured data designed at Stanford as a part of the Tsimmis project [9]. Due to
the semistructured nature of XML, it has also been adopted for modelling XML
documents. In OEM, an XML document is represented as a graph with a single
root. The nodes represent the element contents while the edges represent the
element names, with leaves holding character data. Attribute values are given
on corresponding nodes, and attribute references are depicted as dashed lines [2].

In order for OEM to model MXML documents we have to adapt it so as to
represent elements and attributes whose contents vary according to dimension
values. For this, we extend OEM by introducing another type of node-edge pair,
which is represented by a thick line departing from a square. The square is called
contezt node while the thick line is called context edge. The MOEM model of the
MXML document of example 2 is shown in figure 1.

For each multidimensional element (whose value depends on a number of
contexts), there corresponds a context node and a set of context edges departing
from this node. Each context edge represents a possible context and leads to the
content of the element for the specific context.

Attributes whose values depend on contexts are represented in a similar way.
Attribute values qualified by the dimension values are given on corresponding
nodes. In the case of attribute references, the dashed line of the OEM model
leads to a context node from which context attribute edges depart (denoted by
thick lines). Each context edge leads to the element node to which the attribute
refers for the specific context.

It is easy to see that, from a given MXML document we can obtain a set of
ordinary XML documents, each one corresponding to different combination of
choices of context edges.

5 Discussion and Future Work

The MXML formalism presented in this paper attempts to remedy what seems to
be a shortcomming of XML, namely its inability to represent context-dependent
information in a concise way. Although MXML has inherited many features from



—bibliography

Multidimensional
OEM
book™
publisher
(isbn="12345678") e publisher————________
— T year
aulhor aulh or/
language=Greek
price

language=English

mle
1999
(currency="USD")
NCSR <"NCSR
language=Greek Demokritos Demgkm:s in
/anguage English reek>

period=normal

client=regular

period=discount period in {normal,discount}
hrsmar{lasma&ne firstname Jastname dlient=regular ol
100

<"Manolis" <"Gergatsoulis"

Manoli i i i
anolis  Gergatsoulis i, Greeks in Greek>

100

Fig. 1. The Multidimensional OEM model for example 2.

existing multidimensional formalisms, it also appears to lead to new interesting
and unexplored issues of multidimensionality. In the following we discuss the
relationship of MXML with other formalisms and also outline new directions for
future research.

Relationships with Existing Formalisms: MXML has been mainly influ-
enced from the work on IHTML [20, 8, 7] (Intensional HTML). In fact, the work
on MXML started as an attempt to transfer the research results of the IHTML
project, to the more data-oriented formalism of XML. The main difference be-
tween IHTML and MXML is a projection of the difference between HTML and
XML. IHTML is focused on the composition and presentation of hyperdocuments
while MXML is focused on data representation mainly for information exchange
purposes. In this context MXML has to deal with problems such as assigning
dimensions to the arbitrary structure of XML data. Other XML-ralated issues
such as DTDs and XML query languages give an interesting research direction
to XML.

Future Research Problems: There are many aspects of the MXML formalism
that the authors would like to further investigate. In the following we list some
of them:

— In the current discussion we have made the assumption that a MXML doc-
ument, exists without reference to an existing DTD (Document Type Defi-
nition). DTD are formalisms similar to types in programming languages and
their purpose is to impose restrictions on what a particular document can



contain. For example, a DTD can specify that a document describing a book
can only contain a single <title> element. In this paper we have not con-
sidered DTDs with respect to MXML documents. It is quite possible that
MXML will require the definition of MDTDs (Multidimensional DTDs).
We have not considered any particular query language for MXML. Research
in query languages for XML is especially active [12,13, 5]. We believe that a
query language for MXML would have to take contexts into account.

A potential application of MXML which we are currently investigating con-
cerns the representation of time-dependent information. Much work has been
carried out in the past on temporal databases [15]. The need to incorporate
time information is also present in the case of semistructured data [10]. How-
ever to the best of our knowledge, no such extension has been considered for
XML.

There is currently no existing implementation of the ideas presented in this
paper. The authors plan to undertake such an implementation of MXML
together with an associated query language.

We believe that further research in the relationships between semistructured

data and multidimensionality, will reveal many issues from which both worlds
will gain significant benefits.

References

1

2.

10.

S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

Serge Abiteboul. On views and XML. In Proceedings of the 18th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Data Base Systems, pages 1-9.
ACM Press, 1999.

E. A. Ashcroft, A. A. Faustini, and R. Jagannathan. An intensional language for
parallel applications programming. In B.K.Szymanski, editor, Parallel Functional
Languages and Compilers, pages 11-49. ACM Press, 1991.

E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge. Multidimen-
sional programming. Oxford University Press, 1995.

A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. SIG-
MOND Record, 29(1), March 2000.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language
(XML) 1.0. http://www.w3.org/TR/REC-xml, 1998.

G. D. Brown. THTML 2: Design and Implementation. In W. W. Wadge, editor,
Proceedings of the 11th International Symposium on Languages for Intensional
Programmaing, 1998.

G. D. Brown. Intensional HTML 2: A practical Approach. Master’s thesis, De-
partment of Computer Science, University of Victoria, 1998.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J. Widom. The TSIMMIS project: Integration of heterogeneous
information sources. In Proceedings of IPSJ Conference, Tokyo, Japan, October,
pages 7-18, 1994.

S. S. Chawathe, S. Abiteboul, and J. Widom. Representing and quering changes in
semistructured data. Theory and Practice of Object Systems (TAPOS), 2000. Spe-
cial Issue on Object-Oriented Technology in Advanced Applications (to appear).



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Sudarshan S. Chawathe. Describing and manipulating XML data. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering, 22(3):3-9,
September 1999.

A. Deutch, M. Ferndndez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A query
language for XML. http://www.w3.org/TR/NOTE-xml-gl, 1999.

A. Deutsch, M. Fernéndez, D. Florescu, A. Levy, D. Maier, and D. Suciu. Quering
XML data. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 22(3):10-18, September 1999.

M. A. Orgun and W. Du. Multi-dimensional logic programming: Theoretical foun-
dations. Theoretical Computer Science, 158(2):319-345, 1997.

G. Ozsoyoglu and R. T. Snodgrass. Temporal and real-time databases: A survey.
IEEE Transactions on Knowledge and Data Engineering, 7(4):513-532, August
1995.

J. Plaice and W. W. Wadge. A New Approach to Version Control. IEEE Trans-
actions on Software Engineering, 19(3):268-276, 1993.

P. Swoboda and W. W. Wadge. Vmake and Ise General Tools for the Intension-
alization of Software Systems. In M. Gergatsoulis and P. Rondogiannis, editors,
Intensional Programming II, pages 310-320. World Scientific, 2000.

W.W. Wadge, G. D. Brown, m.c. schraefel, and T. Yildirim. Intensional HTML. In
Proceedings of the Fourth International Workshop on Principles of Digital Docu-
ment Processing (PODDP ’98), Lecture Notes in Computer Science (LNCS) 1481,
pages 128-139. Springer-Verlag, March 1998.

Norman Walsb. A guide to XML. World Wide Web Journal “XML:Principles,
Tools and Techniques”, 2(4):97-107, 1997.

T. Yildirim. Intensional HTML. Master’s thesis, Department of Computer Science,
University of Victoria, 1997.



