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Abstract. In today’s global environment, the structure and presentation of in-
formation may depend on the underlying context of the user. To address this is-
sue, in previous work we have proposed multidimensional semistructured data 
(MSSD), where an information entity can have alternative variants, or facets, 
each holding under some world, and MOEM, a data model suitable for repre-
senting MSSD. In this paper we briefly present MQL, a query language for 
MSSD that supports context-driven queries, and we attempt to motivate the di-
rect use of context in data models and query languages by comparing MOEM 
and MQL with equivalent, context-unaware forms of representing and querying 
information. Specifically, we implemented an evaluation process for MQL dur-
ing which MQL queries are translated to equivalent Lorel queries, and MOEM 
databases are transformed to corresponding OEM databases. The comparison 
between the two query languages and data models demonstrates the benefits of 
treating context as first-class citizen. We illustrate this query translation process 
using a cross-world MQL query, which has no direct counterpart in context-
unaware query languages and data models. 

1 Introduction 

The Web posed a number of new problems to the management of data, and the need 
for metadata at a semantic level was soon realized [9]. One such problem is that, while 
in traditional databases and information systems the number of users is more or less 
known and their background is to a great extent homogeneous, Web users do not share 
the same background and do not apply the same conventions when interpreting data. 
Such users can have different perspectives of the same entities, a situation that should 
be taken into account by Web data models and query languages. A related issue is that 
information providers often need to manage different variations of essentially the 
same information, which are targeted to different consumer groups. 

Those problems call for a way to represent and query information entities that 
manifest different facets, whose contents can vary in structure and value. As a simple 
example imagine a product (car, laptop computer, etc.) whose specification changes 
according to the country it is being exported. Or a Web page that is to be displayed on 
devices with different capabilities, like mobile phones, PDAs, and personal com-



puters. Another example is a report that must be represented at various degrees of de-
tail and in various languages. 

In previous work we proposed multidimensional semistructured data (MSSD) 
[2,14,16], which are semistructured data [3] that present different facets under different 
contexts. We argued [4] that Web data should be able to adapt to different contexts, 
and that this capability should be managed in a uniform way at the level of database 
and information systems. Context-aware data models and query languages can be ap-
plied on a variety of cases and domains; in [6,7,15] we showed how they can be used 
to represent and query histories of semistructured databases that evolve over time. 

Context has been used in diverse areas of computer science as a tool for reasoning 
with viewpoints and background beliefs, and as an abstraction mechanism for dealing 
with complexity, heterogeneity, and partial knowledge. A formal framework for rea-
soning upon a subset of a global knowledge base can be found in [17], while examples 
of how context can be used for partitioning an information base into manageable 
fragments of related objects can be found in [8,13]. Our perception of context has also 
been used in OMSwe, a web-publishing platform described in [1,12]. OMSwe is based 
on an Object DBMS, which has been extended to support a flexible, domain-
independent model for information delivery where context plays a pivotal role. 

In this paper, we give a short overview of Multidimensional Query Language 
(MQL) [4,7] that treats context as first-class citizen and can express context-driven 
queries, in which context is important for selecting the right data. MQL is based on 
key concepts of Lorel [5], and its data model is Multidimensional OEM (MOEM) [2], 
an extension of OEM [3] suitable for MSSD. We present an evaluation process for 
MQL queries that we have implemented in a prototype system. As part of this evalua-
tion process, MQL queries are translated to “equivalent” Lorel queries, and MOEM 
databases are transformed to corresponding OEM databases. Our purpose is to intui-
tively compare the two query languages and data models: although OEM and Lorel 
are not aware of the notion of context, they are in principle capable of handling con-
text-dependent information encoded in a graph. Through this comparison, we demon-
strate the benefits of directly supporting context as first-class citizen: MQL and 
MOEM are much more elegant and expressive when context is involved, while they 
become as simple as Lorel and OEM when context is not an issue. The query transla-
tion process is illustrated using a cross-world MQL query. Cross-world queries relate 
facets of information that hold under different worlds, and have no counterpart in con-
text-unaware query languages and data models. 

The paper is structured as follows. Section 2 reviews preliminary material on 
MSSD. Section 3 introduces MQL. Section 4 presents in detail the MQL evaluation 
process: the transformation of MOEM to OEM is specified first, and then the transla-
tion of MQL to Lorel is explained. Finally, Section 5 summarizes the conclusions. 

2 Multidimensional Semistructured Data 

The main difference between conventional and multidimensional semistructured data 
is the introduction of context specifiers. Context specifiers are syntactic constructs that 



are used to qualify pieces of semistructured data and specify sets of worlds under 
which those pieces hold. In this way, it is possible to have variants of the same infor-
mation entity, each holding under a different set of worlds. An information entity that 
encompasses a number of variants is called multidimensional entity, and its variants 
are called facets of the entity. Each facet is associated with a context that defines the 
conditions under which the facet becomes a holding facet of the multidimensional en-
tity. 

2.1 Dimensions and Worlds 

The notion of world is fundamental in MSSD. A world is specified using parameters 
called dimensions, and represents an environment under which data obtain a sub-
stance. The notion of world is defined [2] with respect to a set of dimensions DDDD and re-
quires that every dimension in DDDD be assigned a single value. 

In MSSD, sets of worlds are represented by context specifiers (or simply contexts), 
which are constraints on dimension values. The use of dimensions for representing 
worlds is shown through the following context specifiers: 
(a) [time=07:45] 
(b) [language=greek, detail in {low,medium}] 
(c) [season in {fall,spring}, daytime=noon 
        | season=summer] 
Context specifier (a) represents the worlds for which the dimension time has the 

value 07:45, while (b) represents the worlds for which language is greek and 
detail is either low or medium. Context specifier (c) is more complex, and repre-
sents the worlds where season is either fall or spring and daytime is noon, 
together with the worlds where season is summer. For a set of (dimension, value) 
pairs to represent a world with respect to a set of dimensions DDDD, it must contain exactly 
one pair for each dimension in DDDD. Therefore, if DDDD = {language, detail} with 
domains VVVVlanguagelanguagelanguagelanguage = {english, greek} and VVVVdetaildetaildetaildetail = {low, medium, 
high}, then {(language, greek), (detail, low)} is one of the six pos-
sible worlds with respect to DDDD. This world is represented by context specifier (b), to-
gether with the world {(language, greek), (detail, medium)}. It is not 
necessary for a context specifier to contain values for every dimension in DDDD. Omitting 
a dimension implies that its value may range over the whole domain. 

The context specifier [] is a universal context and represents the set of all possible 
worlds with respect to any set of dimensions DDDD, while the context specifier [-] is an 
empty context and represents the empty set of worlds with respect to any set of dimen-
sions DDDD. In [2,4] we have defined operations on context specifiers, such as context in-
tersection and context union that correspond to the conventional set operations of in-
tersection and union on the related sets of worlds. We have also defined how a context 
specifier can be transformed to the set of worlds it represents with respect to a set of 
dimensions DDDD. Moreover, context equality and context subset allow to compare con-
texts based on their respective set of worlds. 



2.2 Multidimensional OEM 

Multidimensional Data Graph [4] is an extension of Object Exchange Model (OEM) 
[3,5], suitable for representing multidimensional semistructured data. Multidimen-
sional Data Graph extends OEM with two new basic elements: 

• Multidimensional nodes represent multidimensional entities, and are used to group 
together nodes that constitute facets of the entities. Graphically, multidimensional 
nodes have a rectangular shape to distinguish them from conventional circular 
nodes. 

• Context edges are directed labeled edges that connect multidimensional nodes to 
their facets. The label of a context edge pointing to a facet, is a context specifier 
defining the set of worlds under which that facet holds. Context edges are drawn as 
thick lines, to distinguish them from conventional (thin-lined) OEM edges. 

In Multidimensional Data Graph the conventional circular nodes of OEM are called 
context nodes and represent facets associated with some context. Conventional OEM 
edges (thin-lined) are called entity edges and define relationships between objects. All 
nodes are considered objects, and have unique object identifiers (oids). Context ob-
jects are divided into complex objects and atomic objects. Atomic objects have a value 
from one of the basic types, e.g. integer, real, strings, etc. A context edge cannot start 
from a context node, and an entity edge cannot start from a multidimensional node. 
Those two are the only constraints on the morphology of Multidimensional Data 
Graph. 
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Fig. 1. A multidimensional music-club 



As an example, consider the simple Multidimensional Data Graph in Figure 1, 
which represents context-dependent information about a music club. For simplicity, 
the graph is not fully developed and some of the atomic objects do not have values at-
tached. The music_club with oid &1 operates on a different address during the 
summer than the rest of the year (in Athens it is usual for clubs to move south close to 
the sea in the summer period, and north towards the city center during the rest of the 
year). Except from having a different value, context objects can have a different struc-
ture, as is the case of &10 and &15 which are facets of the multidimensional object 
address with oid &4. The menu of the club is available in three languages, namely 
English, French and Greek. In addition, the club has a couple of alternative parking 
places, depending on the time of day as expressed by the dimension daytime. The 
music-club review has two facets: node &16 is the low detail facet containing only the 
review score with value 6, while the high detail facet &17 contains in addition review 
comments in two languages. In what follows we formally define Multidimensional 
Data Graph. 

Let CS be the set of all context specifiers, L be the set of all labels, and A be the set 
of all atomic values. A Multidimensional Data Graph G is a finite directed edge-
labeled multigraph G = (Vmld, Vcxt, Ecxt, Eett, r, v), where: 

1. The set of nodes V consists of multidimensional nodes and context nodes, V = Vmld 
∪ Vcxt. Context nodes are divided into complex nodes and atomic nodes, Vcxt = Vc 
∪ Va. 

2. The set of edges E consists of context edges and entity edges, E = Ecxt ∪ Eett, such 
that Ecxt ⊆ (Vmld × CS × V) and Eett ⊆ (Vc × L × V). 

3. r ∈ V is the root, with the property that there exists a path from r to every other 
node in V. 

4. v is a function that assigns values to nodes, such that: v(x) = M if x ∈ Vmld, v(x) = C 
if x ∈ Vc, and v(x)=v′ (x) if x ∈ Va, where M and C are reserved values, and v′ is a 
value function v′ : Va → A which assigns values to atomic nodes. 

Two fundamental concepts related to Multidimensional Data Graphs are explicit 
context and inherited context [2,4]. The explicit context of a context edge is the con-
text specifier assigned to that edge, while the explicit context of an entity edge is con-
sidered to be the universal context specifier []. The explicit context can be consid-
ered as the “true” context only within the boundaries of a single multidimensional 
entity. When entities are connected together in a graph, the explicit context of an edge 
is not the “true” context, in the sense that it does not alone determine the worlds under 
which the destination node holds. The reason for this is that, when an entity e2 is part 
of (pointed by through an edge) another entity e1, then e2 can have substance only un-
der the worlds that e1 has substance. This can be conceived as if the context under 
which e1 holds is inherited to e2. The context propagated in that way is combined with 
(constraint by) the explicit context of each edge to give the inherited context for that 
edge. The inherited context of a node is the union of the inherited contexts of incom-
ing edges (the inherited context of the root is []). As an example, node &18 in Figure 
1 has inherited context [detail in {low, high}]. Worlds where detail is 



low are inherited through node &16, while worlds where detail is high are inher-
ited through node &17. 

In Multidimensional Data Graph leaves are not restricted to atomic nodes, and can 
be complex or multidimensional nodes as well. This raises the question under which 
worlds does a path lead to a leaf that is an atomic node. Those worlds are given by 
context coverage, which is symmetric to inherited context, but propagates to the oppo-
site direction: from the leaves up to the root of the graph. The context coverage of a 
node or an edge represents the worlds under which the node or edge has access to 
leaves that are atomic nodes. The context coverage of leaves that are atomic nodes is 
[], while the context coverage of leaves that are complex nodes or multidimensional 
nodes is [-]. The context coverage of node &19 in Figure 1 is [lang in {gr, 
en}] (all leaves in Figure 1 are considered atomic nodes). 

For every node or edge, the context intersection of its inherited context and its con-
text coverage gives the inherited coverage of that node or edge. The inherited cover-
age represents the worlds under which a node or edge may actually hold, as deter-
mined by constraints accumulated from both above and below. A related concept is 
path inherited coverage, which is given by the context intersection of the inherited 
coverages of all edges in a path, and represents the worlds under which a complete 
path holds. 

A context-deterministic Multidimensional Data Graph is a Multidimensional Data 
Graph in which context nodes are accessible from a multidimensional node under mu-
tually exclusive inherited coverages (hold under disjoint sets of worlds). Intuitively, 
context-determinism means that, under any specific world, at most one context node is 
accessible from a multidimensional node. A Multidimensional OEM, or MOEM for 
short, is a context-deterministic Multidimensional Data Graph whose every node and 
edge has a non-empty inherited coverage. In an MOEM all nodes and edges hold un-
der at least one world, and all leaves are atomic nodes. The Multidimensional Data 
Graph in Figure 1 is an MOEM. 

Given a world w, it is possible to reduce an MOEM to a conventional OEM graph 
holding under w, by eliminating nodes and edges whose inherited coverage does not 
contain w. A process that performs such a reduction to OEM is presented in [2]. In ad-
dition, given a set of worlds, it is possible to partially reduce an MOEM into a new 
MOEM, that encompasses exactly the OEM facets for the given set of worlds. 

3 Multidimensional Query Language 

Multidimensional Query Language (MQL) [4], is a query language designed espe-
cially for MOEM databases, and is essentially an extension of Lorel [5]. An important 
feature of MQL is context path expressions, which are path expressions qualified with 
context specifiers and context variables. Context path expressions take advantage of 
the fact that every Multidimensional Data Graph can be transformed to a canonical 
form [4,7], where every context node is child of solely multidimensional node(s), and 
vice-versa. The canonical form of the MOEM in Figure 1 contains an additional mul-
tidimensional node which is pointed by the entity edge labeled name, and whose only 



facet under every possible world (explicit context []) is the context node &3. It also 
contains similar multidimensional nodes for the context nodes &11, &12, &13, &14, 
&18, and &1 (the root of a graph in canonical form is always a multidimensional 
node). If a graph is in canonical form, every possible path is formed by a repeated 
succession of one context edge and one entity edge. Context path expressions are built 
around the canonical form, and therefore consist of a number of entity parts and facet 
parts succeeding one another. Entity parts follow a dot (.) and are matched against 
entity edges, while facet parts follow a double colon (::) and are matched against 
context edges: 
[detail=high]music_club::[-].review::[-]  X 
In this context path expression, music_club and review are entity parts, while 

the two empty context specifiers [-] are facets parts. A facet part matches a corre-
sponding context edge, if it is subset of the explicit context of the edge, in other 
words, if every world it defines is covered by the explicit context of the edge. Conse-
quently, the empty context [-] as a facet part matches any context edge. The context 
specifier [detail=high] is an inherited coverage qualifier and is matched against 
the path inherited coverage of a path. For a path to match an inherited coverage quali-
fier, it must hold under every world specified by the qualifier. An  inherited coverage 
qualifier may precede any entity part or facet part in a context path expression. Facet 
parts can often be omitted, implying the empty context [-]. Therefore, the above 
context path expression can also be written as: 
[detail=high]music_club.review  X 
Evaluated on the graph of Figure 1, this context path expression causes the context 

object variable X to bind to node &17. Had we used a multidimensional object vari-
able, denoted <X>, we would have caused it to bind to the multidimensional node &5. 

Consider the following MQL query: 
select name: P, winter_street: Y 
from music_club X, 
  X.[season=winter]address.street Y, 
  X.[season=summer]address.street Z, 
  X.name P 
where Z=“Omirou” 
This is a cross-world query, which returns the name and the street address in winter 

of a music club whose summer address is known. Evaluated on the database of Figure 
1, variable P binds to node &3 and Y binds to &13. The result of an MQL query is al-
ways a Multidimensional Data Graph in the form of an mssd-expression [2]. 

4 Evaluating MQL Queries with LORE 

We have implemented MQL on top of LORE [10], analogously to Lorel, which has 
been implemented on top of an object database [5]. We have chosen LORE as a basis 
for implementing MQL, because our purpose was to see: (a) how an MQL query com-



pares with an “equivalent” Lorel query, and (b) how an MOEM can be expressed 
through a conventional OEM. 

The overall architecture is shown in Figure 2. The process we want to implement is 
depicted as a dashed line, which starts from an MQL query, passes through an MOEM 
database, and concludes with a Multidimensional Data Graph that is the result of the 
query. 

The process that actually takes place is depicted as a normal line, and shows a Lo-
rel query evaluated on an OEM database that returns an OEM graph as a result. This 
line together with the ellipse-shaped boxes is part of LORE, which is controlled by our 
system through the programming interface that it provides. 

The main issue is to define a transformation T from Multidimensional Data Graphs 
M to OEMs O = T(M), with the following properties: 

• The reverse transformation T−1 exists, and if O is given then M = T−1(O) can be re-
covered. 

• It is possible to translate an MQL query qM to an “equivalent” Lorel query qL. 

By equivalent we mean that if qM evaluated on M returns M′ and qL evaluated on O 
returns O′, then T(M′) = O′. Then, the answer to qM can be computed by evaluating qL 
on T(M), and by applying the reverse transformation T−1(O′) to the results of qL. 

Those transformations and the MQL query translation are depicted in Figure 2 as 
thick horizontal arrows. The system, among other things, implements those arrows and 
performs the following key steps: 

1. Converts an MOEM database to an OEM database, which becomes the database of 
LORE. 

2. Translates an MQL query to a Lorel query, which is passed over to LORE for 
evaluation on the OEM database. 

3. Gets the results from LORE, and converts them from OEM back to Multidimen-
sional Data Graph. 

MQL query Lorel query

MOEM
database

OEM
database

Result:
Multidim.

Data Graph

Result:
OEM graph

query rewriting

M.D.G. to OEM

OEM to M.D.G.

Fig. 2. Evaluating MQL queries using LORE



Step 1 initializes the database and corresponds to the gray horizontal arrow in the 
middle of Figure 2, while steps 2 and 3 are carried out every time an MQL query is 
submitted. The Multidimensional Data Graph of step 3 is the result of the MQL query 
of step 2 evaluated on the MOEM database of step 1. 

In the following sections, we specify the three key steps listed above. The actual 
application that implements them is part of a more comprehensive platform [11] for 
MSSD, and is presented in Section 4.4. 

4.1 Transforming MOEM Databases to OEM 

In order to transform MOEM to OEM, we must use special OEM structures to repre-
sent MOEM elements that do not have a counterpart in OEM, namely context edges 
and multidimensional nodes: context edges can be represented by OEM edges that 
have some special label, while multidimensional nodes correspond to OEM nodes 
from which these special edges depart. Moreover, we must encode context in OEM in 
a way Lorel can understand and handle. Contexts that must be encoded include ex-
plicit contexts and inherited coverages of edges. 

Figure 3 gives an intuition of the transformation. It presents a simple Multidimen-
sional Data Graph M together with its OEM counterpart O. Nodes with a capital letter 
in M correspond to nodes with the respective lowercase letter in O. Observe that for 
each edge in M an additional node exists in O, splitting the edge in two OEM edges. 
The role of this node is to group the encoded context(s) for the corresponding Multi-
dimensional Data Graph edge. A number of reserved labels with special meaning are 

 

Fig. 3. Representing Multidimensional Data Graph using OEM 



used. All reserved labels start with an underscore, and they are: _ett, _facet, 
_cxt, _icw, and _ecw. An entity edge is represented by an edge with the same label 
and a following edge labeled _ett. A context edge is represented by an edge labeled 
_facet and a following edge labeled _cxt. Explicit contexts and inherited cover-
ages of edges are converted to the worlds they represent, and all possible worlds are 
mapped to integers. Edges that are labeled _icw point to the enumerated worlds (in-
teger-valued nodes) that belong to inherited coverages, while edges labeled _ecw 
point to the enumerated worlds that belong to explicit contexts. 

The actual transformation process of a Multidimensional Data Graph M = (Vmld, 
Vcxt, Ecxt, Eett, r, v) to an OEM O is given below. 

O ←←←← MDGToOEM (M) is: 
1. For every world, add a new atomic node w to Vcxt that corresponds to that world, 

having as value the integer mapped to the world. 
2. Move all (multidimensional) nodes from Vmld to Vcxt (complex nodes). 
3. For every edge h = (q, l, p) ∈ Eett add a new complex node u to Vcxt. Then, replace 

h with the new edges (q, l, u) and (u, _ett, p) in Eett. Next, for every world repre-
sented by the inherited coverage of h, add an edge (u, _icw, w) to Eett, where w 
corresponds to that world. 

4. For every edge h = (q, c, p) ∈ Ecxt add a new complex node u to Vcxt. Then, remove 
h from Ecxt, and add the edges (q, _facet, u) and (u, _cxt, p) to Eett. Next, for 
every world represented by the inherited coverage of h, add an edge (u, _icw, w) 
to Eett, where w corresponds to that world. Moreover, for every world represented 
by the explicit context of h, add an edge (u, _ecw, w) to Eett, where w corresponds 
to that world. 

5. Return O = (Vcxt, Eett, r, v). 

4.2 Translating MQL Queries to Lorel 

MQL queries can be translated to “equivalent” Lorel queries, which are evaluated on 
the OEM given by the transformation defined in the previous section. For this transla-
tion to work, the MOEM database must be in canonical form when the transformation 
to OEM takes place. This allows context path expressions, which are built around the 
canonical form, to be translated to “equivalent” Lorel path expressions. 

In this section we specify such a translation that supports the major features of 
MQL. We have not addressed some features of MQL that seemed difficult or impossi-
ble to translate, like regular expressions in context path expressions (general context 
path expressions [4]). 

Converting Context Path Expressions to Path Expressions. To facilitate the 
comprehension of translated Lorel queries, we use E-HUB as identifier for nodes from 
which a _ett edge departs, MLD for nodes from which a _facet edge departs, and 
C-HUB for nodes from which a _cxt edge departs. In addition, we use w1, w2, ... to 
denote the integers that have been mapped to worlds. 

We start with a very simple MQL from clause: 



from X.[c]label Y 
We assume [c] is a context specifier representing the worlds that correspond to 

w4, w7, and w9. As shown in [4], [c] is implied throughout the path it qualifies, and 
the clause can be written as: 
from X.[c]label::[c][-] Y 
This from clause can also be written in MQL using a multidimensional object 

variable <V> as: 

from X.[c]label <V>, 
     <V>::[c][-] Y 
The equivalent Lorel expression is: 
from X.label E-HUB, E-HUB._ett MLD, 
     MLD._facet C-HUB, C-HUB._cxt Y 
where     E-HUB._icw{W4} = w4  
      and E-HUB._icw{W7} = w7  
      and E-HUB._icw{W9} = w9  
      and C-HUB._icw{W4} = w4  
      and C-HUB._icw{W7} = w7  
      and C-HUB._icw{W9} = w9  
The where clause states that the inherited coverages of the two MOEM edges 

must contain all the worlds specified by [c]. Observe the use of the variables W4, W7, 
and W9, which declare that it is not the same node that must be equal to w4, to w7, and 
to w9 (otherwise the condition would always be false). 

We now use the MQL query example of Section 3, and apply the same process to 
its from clause. For brevity, we use [c1] to denote the context specifier [sea-
son=winter], and [c2] to denote [season=summer]. The MQL query can 
now be written as: 
select name: P, winter_street: Y 
from [-]music_club <V1>, <V1>::[-][-] X, 
   X.[c1]address <V2>, <V2>::[c1][-] V3, 
   V3.[c1]street <V4>, <V4>::[c1][-] Y, 
   X.[c2]address <V5>, <V5>::[c2][-] V6, 
   V6.[c2]street <V7>, <V7>::[c2][-] Z, 
   X.[-]name <V8>, <V8>::[-][-] P 
where Z=“Omirou” 
The equivalent Lorel query is: 
select name: P, winter_street: Y 
from 
   music_club E-HUB1, E-HUB1._ett V1, 
   V1._facet C-HUB1, C-HUB1._cxt X, 
   X.address E-HUB2, E-HUB2._ett V2, 
   V2._facet C-HUB2, C-HUB2._cxt V3, 
   V3.street E-HUB3, E-HUB3._ett V4, 
   V4._facet C-HUB3, C-HUB3._cxt Y, 
   X.address E-HUB4, E-HUB4._ett V5, 



   V5._facet C-HUB4, C-HUB4._cxt V6, 
   V6.street E-HUB5, E-HUB5._ett V7, 
   V7._facet C-HUB5, C-HUB5._cxt Z, 
   X.name E-HUB6, E-HUB6._ett V8, 
   V8._facet C-HUB6, C-HUB6._cxt P 
where 
   Z=“Omirou” 
   and predicate(E-HUB2) and predicate(C-HUB2) 
   and predicate(E-HUB3) and predicate(C-HUB3) 
   and predicate(E-HUB4) and predicate(C-HUB4) 
   and predicate(E-HUB5) and predicate(C-HUB5) 
The expressions predicate(VAR) ensure that the corresponding edges have a 

proper inherited coverage. Therefore, each expression predicate(VAR) must be 
replaced by 
          VAR._icw{W1} = w1  
      and VAR._icw{W2} = w2  
      and VAR._icw{W3} = w3  
      and ... 
where w1, w2, w3, ... are the integers that correspond to worlds of the respective in-

herited coverage qualifier: for E−HUB2, C−HUB2, E−HUB3, and C−HUB3 the inher-
ited coverage qualifier is [season=winter], while for E−HUB4, C−HUB4, 
E−HUB5, and C−HUB5 the inherited coverage qualifier is [season=summer]. The 
edges that correspond to variables E−HUB1, C−HUB1, E−HUB6, and C−HUB6 can 
have any inherited coverage because their implied inherited coverage qualifier is the 
empty context [-], thus they are not included in where. 

Using the above framework, it is straightforward to translate MQL queries that con-
tain multidimensional object variables. Actually, the analytical form of our MQL 
query example contains the multidimensional object variables <V1>, <V2>, <V4>, 
<V5>, <V7>, and <V8>, which correspond to the variables V1, V2, V4, V5, V7, and 
V8 of the equivalent Lorel query. In addition, it is easy to accommodate explicit con-
text qualifiers. A facet part ::[cI][cE] will result in a predicate of the form: 

          VAR._icw{W1} = w1  
      and VAR._icw{W2} = w2  
      and VAR._icw{W3} = w3  
      and ... 
      and VAR._ecw{W2} = w2  
      and VAR._ecw{W6} = w6  
      and ... 

where w1, w2, w3, ... correspond to the worlds of the inherited coverage qualifier [cI], 
and w2, w6, ... correspond to the worlds of the explicit context qualifier [cE]. 



Context Variables and “within” Clause. MQL uses an additional within clause to 
express conditions on contexts. Consider the MQL query: 
select comments: Y 
from music_club.[X]review.comments Y 
within [X] ∗ [detail=high] <= [lang=gr] 
The context variable [X] binds to the path inherited coverage of the path 

review::[-].comments::[-] 
and the condition in within requires that the context intersection (denoted ∗) be-
tween this path inherited coverage and [detail=high] be context subset (denoted 
<=) of [lang=gr]. Consequently, this condition ensures that the query returns 
comments facets in Greek in high detail (node &20 in Figure 1). Note that there are 
more intuitive ways to express the same query in MQL, but with less demonstrative 
value. 

The first step is to express context specifiers as Lorel queries. Suppose that [de-
tail=high] represents the worlds that correspond to the integers w1, w2, and w3. 
The following Lorel query evaluates to the respective nodes: 
select W 
from music_club.#._icw W 
where W=w1 or W=w2 or W=w3  
Lets use L[detail=high] to refer to this query, and L[lang=gr] to refer to an analogous 

Lorel query that expresses [lang=gr]. In addition, we use the symbol LCXT_VAR to 
refer to a Lorel query expressing the path inherited coverage bound to the context 
variable [X]. This Lorel query is: 

E-HUB2._icw intersect C-HUB2._icw 
intersect 
E-HUB3._icw intersect C-HUB3._icw 
The query evaluates to the “worlds” under which all edges of the path hold. Now 

that we have expressed all contexts as queries evaluating to sets of nodes that repre-
sent worlds, we can express context subset as a relation between the queries. Assum-
ing that query1 expresses a context [c1] and query2 a context [c2], the condi-
tion [c1] <= [c2] ([c1] context subset of [c2]) is implemented by the 
predicate: 

for all LEFT in (query1):  
    exists RIGHT in (query2): LEFT = RIGHT 

where LEFT and RIGHT are Lorel variables that range over the “worlds” to the left 
and to the right side of the symbol <=, respectively. 

The MQL query can now be translated to the following Lorel query: 
select comments: Y 
from  
  music_club E-HUB1, E-HUB1._ett V1, 
  V1._facet C-HUB1, C-HUB1._cxt V2, 



  V2.review E-HUB2, E-HUB2._ett V3, 
  V3._facet C-HUB2, C-HUB2._cxt V4, 
  V4.comments E-HUB3, E-HUB3._ett V5, 
  V5._facet C-HUB3, C-HUB3._cxt Y 
where 
  for all LEFT in  
  (LCXT_VAR intersect L[detail=high]): 
       exists RIGHT in (L[lang=gr]): 
           LEFT = RIGHT 
By combining in similar ways Lorel queries that express sets of worlds, it is 

straightforward to implement any context condition in the within clause. 

4.3 Transforming OEM Results to M.D.G. 

LORE returns the result of a Lorel query as an OEM graph. As stated, this OEM graph 
can be transformed to a Multidimensional Data Graph, which is the result of the origi-
nal MQL query. 

The process that transforms an OEM O = (V, E, r, v) to a Multidimensional Data 
Graph M is given below. 

M ←←←← OEMToMDG (O) is: 
1. Represent O as a Multidimensional Data Graph M = (Vmld, Vcxt, Ecxt, Eett, r, v), 

where Vcxt = V, Eett = E, and Vmld, Ecxt are empty sets. 
2. For every edge h = (q, l, u) ∈ Eett where l is not a reserved label, remove u from 

Vcxt. Then remove h and (u, _ett, p) from Eett, and add the edge (q, l, p) to Eett. 
Remove all edges (u, _icw, w) from Eett. 

3. For every edge h = (q, _facet, u) ∈ Eett, move q from Vcxt to Vmld (if not already 
moved), and remove u from Vcxt. For all nodes w, where (u, _ecw, w) ∈ Eett, apply 
context union to the corresponding worlds to get a context specifier c. Then remove 
h and (u, _cxt, p) from Eett, and add the edge (q, c, p) to Ecxt. Remove all edges (u, 
_ecw, w) and (u, _icw, w) from Eett. 

4. Remove from Vcxt all nodes that correspond to worlds (unreachable from the root at 
this time). 

5. Return M = (Vmld, Vcxt, Ecxt, Eett, r, v). 

Notice that, in order to reconstruct context specifiers, step 3 needs the same map-
ping of worlds to integers that was initially used while transforming the MOEM data-
base to OEM. 

4.4 Prototype Implementation 

Our prototype system is implemented in Java and interfaces with LORE, which is used 
as a back-end. The system is initialized with an MOEM database, receives MQL que-
ries, and returns Multidimensional Data Graphs as results. The system actually consti-
tutes the Query Subsystem of MSSDesigner [11], a more general platform for manag-



ing multidimensional semistructured data, and is shown in Figure 4. It relies on this 
platform to perform basic functions, like carrying out context operations and calculat-
ing the inherited coverage of MOEMs. 

5 Conclusions 

In this paper we demonstrated some of the benefits of treating context as first-class 
citizens in Web data models and query languages. We briefly introduced MQL, a con-
text-aware query language for semistructured data, and discussed in detail an evalua-
tion process for MQL queries. We defined a transformation from MOEM graphs to 
corresponding OEM graphs and vice-versa, and specified how MQL queries can be 
translated to equivalent Lorel queries. We presented a prototype system that imple-
ments the above, and uses LORE to evaluate MQL queries. This evaluation process 
gave an opportunity for an intuitive comparison between the two query languages and 
data models: MQL and MOEM are much more elegant and expressive when context is 
involved, while they become as simple as Lorel and OEM when context is not an is-
sue. Moreover, MQL and MOEM directly support cross-world queries, which have no 
counterpart in context-unaware query languages. 

 

Fig. 4. Evaluating an MQL query and displaying the results in MSSDesigner 
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