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Abstract. Multidimensional Semistructured Data (MSSD) are semistruc-

tured data that present di�erent facets under di�erent contexts. Contexts

represent alternative worlds, and are expressed by assigning values to a set

of user-de�ned variables called dimensions. The notion of context has been

incorporated in OEM, and the extended model is called Multidimensional

OEM (MOEM), a graph model for MSSD. In this paper, we explain in

detail how MOEM can represent the history of an OEM database. We dis-

cuss how MOEM properties are applied in the case of representing OEM

histories, and show that temporal OEM snapshots can be obtained from

MOEM. We present a system that implements the proposed ideas, and

we use an example scenario to demonstrate how an underlying MOEM

database accommodates changes in an OEM database. Furthermore, we

show that MOEM is capable to model changes occurring not only in OEM

databases, but in Multidimensional OEM databases as well.

Keywords:Multidimensional Semistructured Data, Multidimensional OEM,

OEM History, History of Semistructured Data.

1 Introduction and Preliminaries

In this paper we investigate the use of Multidimensional Object Exchange Model

(Multidimensional OEM orMOEM for short), a graph model formultidimensional

semistructured data, for representing histories of semistructured databases. We
start with an introduction to Multidimensional OEM, we explain in detail the way
it can be used to model the history of an OEM database, we present an example
scenario using our prototype implementation, and we show that Multidimensional
OEM can be used to model its own histories as well.

The motivation behind multidimensional semistructured data is that, in con-
trast to traditional databases and information systems where the number of users
is more or less known and their background is to a great extend homogeneous,
Web users do not share the same background and do not apply the same con-
ventions when interpreting data. Such users can have di�erent perspectives of the



same entities, a situation that should be taken into account by Web data mod-
els. As a simple example, imagine a report that must be represented in various
languages and at various degrees of detail.

In this section we review some preliminary concepts on multidimensional
semistructured data, that will be used in the sections that follow. Multidimen-

sional semistructured data (MSSD in short) [9] are semistructured data [10, 1]
which present di�erent facets under di�erent contexts. The main di�erence be-
tween conventional and multidimensional semistructured data is the introduction
of context speci�ers. Context speci�ers are syntactic constructs that are used to
qualify semistructured data expressions (ssd-expressions) [1] and specify sets of
worlds under which the corresponding ssd-expressions hold. In this way, it is possi-
ble to have at the same time variants of the same information entity, each holding
under a di�erent set of worlds. An information entity that encompasses a number
of variants is called multidimensional entity, and its variants are called facets of
the entity. The facets of a multidimentional entity may di�er in value and / or
structure, and can in turn be multidimensional entities or conventional informa-
tion entities. Each facet is associated with a context that de�nes the conditions
under which the facet becomes a holding facet of the multidimensional entity.

In [9] we extend ssd-expressions [1] with context speci�ers and propose mssd-

expressions, a syntax for representing multidimensional semistructured data. An-
other way of representing multidimensional semistructured data is Multidimen-

sional XML (MXML in short) [5, 6], an extension of XML that incorporates con-
text speci�ers. In MXML, multidimensional elements and multidimensional at-

tributes may have di�erent facets that depend on a number of dimensions. MXML
gives new possibilities for designing Web pages that deal with context-dependent
data. We refer to the new method as the multidimensional paradigm, and we
present it in detail in [6].

1.1 Context and Dimensions

The notion of world is fundamental in MSSD. A world represents an environment
under which data obtain a substance. In the following de�nition, we specify the
notion of world using a set of parameters called dimensions.

De�nition 1. Let D be a nonempty set of dimension names and for each d 2 D,
let V

d
be the domain of d, with V

d
6= ;. A world w with respect to D is a set whose

elements are pairs (d; v), where d 2 D and v 2 V
d
, such that for every dimension

name in D there is exactly one element in w.

In MSSD, sets of worlds are represented by context speci�ers, which can be
seen as constraints on dimension values.

Example 1. The use of dimensions for representing worlds is shown with the fol-
lowing three context speci�ers:

(a) [time=07:45]

(b) [language=greek, detail in {low,medium}]

(c) [season in {fall,spring}, daytime=noon | season=summer]
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In Example 1, context speci�er (a) represents the worlds for which the dimen-
sion time has the value 07:45, while (b) represents the worlds for which language

is greek and detail is either low or medium. Context speci�er (c) is more complex,
and represents the worlds where season is either fall or spring and daytime is
noon, together with the worlds where season is summer. Notice that, according to
de�nition 1, for a set of (dimension; value) pairs to represent a world with respect
to a set of dimensions D, it must contain exactly one pair for each dimension in
D. Therefore, if D = flanguage; detailg with V

language
= fenglish; greekg

and V
detail

= flow; medium; highg, then f(language; greek); (detail; low)g is
one of the six possible worlds with respect to D. This world is represented by
context speci�er (b) in Example 1, together with the world f(language; greek);
(detail; medium)g. It is not necessary for a context speci�er to contain values for
every dimension in D. Omitting a dimension implies that its value may range over
the whole dimension domain.

The context speci�er [] is called universal context and represents the set of all
possible worlds with respect to any set of dimensions D . In [9] we have de�ned
operations on context speci�ers, such as context intersection and context union

that correspond to the conventional set operations of intersection and union on
the related sets of worlds. We have also de�ned how a context speci�er can be
transformed to the set of worlds it represents with respect to a set of dimensions
D. An important case for MSSD is when two context speci�ers represent disjoint
sets of worlds; in that case the context speci�ers are called mutually exclusive.

1.2 Multidimensional OEM

Multidimensional Object Exchange Model (MOEM) is an extension of Object Ex-
change Model (OEM) [2], suitable for representing multidimensional semistruc-
tured data. MOEM extends OEM with two new basic elements:

{ Multidimensional nodes: represent multidimensional entities, and are used to
group together nodes that constitute facets of the entities, playing the role
of surrogates for these facets. Graphically, multidimensional nodes have a
rectangular shape to distinguish them from conventional circular nodes.

{ Context edges: are directed labeled edges that connect multidimensional nodes
to their variants. The label of a context edge pointing to a variant p, is a
context speci�er de�ning the set of worlds under which p holds. Context edges
are drawn as thick lines, to distinguish them from conventional (thin-lined)
OEM edges called entity edges in MOEM.

In MOEM the conventional circular nodes of OEM are called context nodes

and they represent facets associated with some context. Conventional OEM edges
(thin-lined) are called entity edges and de�ne relationships between objects. As in
OEM, all MOEM nodes are considered objects, and have a unique object identi�er
(oid). Context objects are divided into complex objects and atomic objects. Atomic
objects have a value from one of the basic types, e.g. integer, real, strings, etc.
A context edge cannot start from a context node, and an entity edge cannot
start from a multidimensional node. Those two are the only constraints on the
morphology of an MOEM graph.
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[lang=fr] [season in
{fall,winter,spring}]
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Fig. 1. A multidimensional music-club.

As an example, consider the MOEM graph in Figure 1 which represents
context-dependent information about a music-club. The graph is not fully devel-
oped and some of the atomic objects do not have values attached. The music club

with oid &1 operates on a di�erent address during the summer than the rest of
the year (in Athens it is not unusual for clubs to move south close to the sea
in the summer period, and north towards the city center during the rest of the
year). Except from having a di�erent value, context objects can have a di�erent
structure, as is the case of &10 and &15 which are facets of the multidimensional
object address with oid &4. The menu of the club is available in three languages,
namely English, French and Greek. In addition, the club has a couple of alterna-
tive parking places, depending on the time of day as expressed by the dimension
daytime. The music-club review has two facets: node &16 is the low detail facet
containing only the review score with value 6, while the high detail facet &17

contains in addition review comments in two languages.
The notion of multidimensional data graph is formally de�ned as follows.

De�nition 2. Let C be a set of context speci�ers, L be a set of labels, and A

be a set of atomic values. A multidimensional data graph is a �nite directed

edge-labeled multigraph G = (V;E; r; C;L;A; v), where: (1) The set of nodes V

is partitioned into multidimensional nodes and context nodes V = V
mld
[ V

cxt
.

Context nodes are further divided into complex nodes and atomic nodes V
cxt

=
V
c
[ V

a
. (2) The set of edges E is partitioned into context edges and entity edges

E = E
cxt
[ E

ett
, such that E

cxt
� V

mld
� C � V and E

ett
� V

c
� L � V . (3)

r 2 V is the root, with the property that there exists a path from r to every other

node in V . (4) v is a function that assigns values to nodes, such that: v(x) = M

if x 2 V
mld

, v(x) = C if x 2 V
c
, and v(x) = v0(x) if x 2 V

a
, where M and C are

reserved values, and v0 is a value function v0 : V
a
! A which assigns values to

atomic nodes.

An MOEM graph is a context deterministic multidimensional data graph, that
is, a multidimensional data graph whose context edges that depart from the same
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multidimensional node have labels (context speci�ers) that are mutually exclusive.
Two fundamental concepts related to multidimensional data graphs and MOEMs
are the notions of explicit and inherited context [9]. The explicit context of a
context edge is the context speci�er assigned to that edge, while the explicit
context of an entity edge is considered to be the universal context speci�er []. The
explicit context can be considered as the \true" context only within the boundaries
of a single multidimensional entity. When entities are connected together in a
MOEM graph, the explicit context of an edge is not the \true" context, in the
sense that it does not alone determine the worlds under which the destination
node holds. The reason for this is that, when an entity e2 is part of (pointed by
through an edge) another entity e1, then e2 can have substance only under the
worlds that e1 has substance. This can be conceived as if the context under which
e1 holds is inherited to e2. The context propagated in that way is combined with
(constraint by) the explicit context of each edge to give the inherited context for
that edge. In contrast to edges, nodes do not have an explicit context; like edges,
however, they do have an inherited context. The inherited context of a node or
edge gives the set of worlds under which the node or edge is taken into account,
when reducing the MOEM graph to a conventional OEM graph (as explained
later in this section).

Multidimensional entities are not obliged to have a facet under every possible
world. However, they must provide enough coverage to give substance to each
incoming edge under at least one world. The notion of validity [9] of an MOEM
graph ensures that edges pointing to multidimensional nodes do not exist in vain.
In particular, an edge h leading to a node q is invalid if the inherited context of
h has no common world with the union of the worlds represented by the explicit
contexts of the edges that depart from q.

Given a speci�c world, it is always possible to reduce a context-deterministic
multidimensional data graph (or MOEM) to a conventional OEM graph holding
under that world. A procedure that performs this MOEM reduction is presented
in [9]. In addition, given a set of worlds, it is possible to partially reduce an MOEM
into a new MOEM, that encompasses only the OEM facets for the given set of
worlds.

2 Representing Histories of Semistructured Data with

MOEM

In this section, we show how Multidimensional OEM can be used to represent
changes in an OEM database. The problem can be stated as follows: given a
static OEM graph that comprises the database, we would like a way to represent
dynamically changes in the database as they occur, keeping a history of tran-
sitions, so that we are able to subsequently query on those changes. In [9] we
outlined some preliminary ideas towards a method for modeling OEM histories,
and showed that it is feasible to model such histories through MOEM. In this
paper we further extend those ideas and present the method in detail: we give
speci�c algorithms, discuss how MOEM properties are applied, present the OEM
History application and give a complete example scenario. In addition, we show
that MOEM is expressive enough to represent its own histories as well.
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The problem of representing and querying changes in semistructured data has
also been studied in [4], where Delta OEM (DOEM in short) has been proposed.
DOEM is a graph model that extends OEM with annotations containing temporal
information. Four basic change operations, namely creNode, updNode, addArc,
and remArc are considered by the authors in order to modify an OEM graph.
Those operations are mapped to four types of annotations. Annotations are tags
attached to a node or an arc, containing information that encodes the history of
changes for that node or arc. When an OEM basic change operation takes place,
a new annotation is added to the a�ected node or arc, stating the type of the
operation, the timestamp, and in the case of updNode the old value of the object.
The modi�cations suggested by the basic change operations actually take place,
except from the arc removal which results to just annotating the arc. Our approach
is based on the same framework, and builds on the key concepts presented in [4].
It is however quite di�erent, as changes are represented by introducing new facets
instead of adding annotations.

A special graph for modeling the dynamic aspects of semistructured data,
called semistructured temporal graph is proposed in [8]. In this graph, every node
and edge has a label that includes a part stating the valid interval for the node
or edge. Modi�cations in the graph cause changes in the temporal part of labels
of a�ected nodes and edges.

An approach for representing temporal XML documents is proposed in [3],
where leaf data nodes can have alternative values, each holding under a time
period. However, the model presented in [3] does not allow dimensions other than
time, and does not explicitly support facets with varying structure for nodes that
are not leaves. Another approach for representing time in XML documents is
described in [7], where the use of Multidimensional XML is suggested.

An important advantage of MOEM over those approaches is that a single
model can be applied to a variety of problems from di�erent �elds; representing
valid time is just one of the possible applications of MOEM. MOEM is suitable
for modeling entities that present di�erent facets, a problem often encountered
on the Web, and the representation of semistructured database histories can be
seen as a special case of this problem. Properties and processes de�ned for the
general case of MOEM, like inherited context, validity, reduction, and querying
are also used without change in the case of representing semistructured histories.
In addition, as we show in section 4, MOEM is a model capable of representing
its own histories.

2.1 OEM and MOEM Basic Operations

A conventional OEM graph is de�ned in [2] as a quadruple O = (V;E; r; v), where
V is a set of nodes, E a set of labeled directed edges (p; l; q) where p; q 2 V and
l is a string, r is a special node called the root, and v is a function mapping each
node to an atomic value of some type (int, string, etc.), or to the reserved value
C which denotes a complex object. In order to modify an OEM database O, four
basic change operations were identi�ed in [4]:

creNode(nid, val): creates a new node, where nid is a new node oid (nid 62
V ), and val is an atomic value or the reserved value C.
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updNode(nid, val): changes the value of an existing object nid to a new
value val. The node nid must not have any outgoing arcs (in case its old value is
C, the arcs should have been removed prior to updating the value).

addArc(p, l, q): adds a new arc labeled l from object p to object q. Both
nodes p and q must already exist in V , and (p; l; q) must not exist in E.

remArc(p, l, q): removes the existing arc (p; l; q). Both nodes p and q must
exist in V .

Given an MOEM databaseM = (V;E; r; C;L;A; v), we introduce the following
basic operations for changing M .

createCNode(cid, val): a new context node is created. The identi�er cid is
new and must not occur in V

cxt
. The value val can be an atomic value of some

type, or the reserved value C.

updateCNode(cid, val): changes the value of cid 2 V
cxt

to val. The node
must not have any outgoing arcs.

createMNode(mid): a new multidimensional node is created. The identi�er
mid is new and must not occur in V

mld
.

addEEdge(cid, l, id): creates a new entity edge with label l from node cid
to node id, where cid 2 V

cxt
and id 2 V .

remEEdge(cid, l, id): removes the entity edge (cid; l; id) from M . The edge
(cid; l; id) must exist in E

ett
.

addCEdge(mid, context, id): creates a new context edge with context con-
text from node mid to node id, where mid 2 V

mld
and id 2 V .

remCEdge(mid, context, id): removes the context edge (mid; context; id)
from M . The context edge (mid; context; id) must exist in E

cxt
.

For conventional OEM and MOEM, object deletion is achieved through arc
removal, since in both OEM and MOEM the persistence of an object is determined
by whether or not the object is reachable from the root. Sometimes the result of
a single basic operation u leads to an inconsistent state: for instance, when a new
object is created, it is temporarily unreachable from the root. In practice however,
it is typical to have a sequence L = u1; u2; : : : ; un of basic operations u

i
, which

corresponds to a higher level modi�cation to the database. By associating such
higher level modi�cations with a timestamp, an OEM history H is de�ned as a
sequence of pairs (t; U), where U denotes a set of basic change operations that
corresponds to L as de�ned in [4], and t is the associated timestamp. Note that
within a single sequence L, a newly created node may be unreachable from the
root and still not be considered deleted. At the end of each sequence, however,
unreachable nodes are considered deleted and cannot be referenced by subsequent
operations.

2.2 Using MOEM to Model OEM Histories

We will now use the operations de�ned in the previous section to represent changes
in an OEM database using MOEM. Our approach is to map the four OEM basic
change operations to MOEM basic operations, in such a way, that new facets
of an object are created whenever changes occur in that object. In this manner,
the initial OEM database O is transformed into an MOEM graph, that uses a
dimension d whose domain is time to represent an OEM history H valid [4] for O.

7



We assume that our time domain T is linear and discrete; we also assume: (1) a
reserved value now, such that t < now for every t 2 T , (2) a reserved value start,
representing the start of time, and (3) a syntactic shorthand v1..vn for discrete
and totally ordered domains, meaning all values v

i
such that v1 � v

i
� v

n
. The

time period during which a context node is the holding node of the corresponding
multidimensional entity is denoted by qualifying that context node with a context
speci�er of the form [d in ft1..t2g].

[d in {t1..now}]

"B""A"

"A"

&11

lab2
lab1 &12

lab2
lab1

&11 &13

[d in {start..t1-1}]
[d in {t1..now}]

updNode(&11, "B") at t1(a)

&1

lab2lab1
&2

lab2lab1

&1 &3

[d in {start..t1-1}]
[d in {t1..now}]

addArc(&1, "lab5", &9) at t1(b)

lab4
lab3

lab4
lab3 lab4

lab3

lab5

&2

lab2lab1

&1 &3

[d in {start..t1-1}]

[d in {t1..t2-1}]

remArc(&3, "lab3", &7) at t2(c)

lab4
lab3 lab4

lab3
lab5

&2

lab2lab1

&1 &3

[d in {start..t1-1}]

lab4
lab3

lab4
lab3

lab5

&10

[d in {t2..now}]

lab4

lab5

&9

&8&7

&7
&8

&7 &8 &9
&7

&8 &9

&9

>

<

<

Fig. 2. Modeling OEM basic change operations with MOEM.

Figure 2 gives an intuition about the correspondence between OEM andMOEM
operations. Consider the sets U1 and U2 of basic change operations, with times-
tamps t1 and t2 respectively. Figure 2(a) shows the MOEM representation of
an atomic object, whose value \A" is changed to \B" through a call to the basic
change operation updNode of U1. Figure 2(b) shows the result of addArc operation
of U1, while �gure 2(c) shows the result of remArc operation of U2, on the same
multidimensional entity. It is interesting to notice that three of the four OEM
basic change operations are similar, in that they update an object be it atomic
(updNode) or complex (addArc, remArc), and all three are mapped to MOEM
operations that actually update a new facet of the original object. Creating a
new node with creNode does not result in any additional MOEM operations; the
new node will subsequently be linked with the rest of the graph (within the same
set U) through addArc operation(s), which will cause new object facet(s) to be
created. Note that, although object identi�ers in Figure 2 may change during the
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OEM history, this is more an implementation issue and does not present any real
problem. In addition, it is worth noting that the changes induced by the OEM
basic change operations a�ect only localized parts of the MOEM graph, and do
not propagate throughout the graph.

Having outlined the approach, we now give a detailed speci�cation. First, the
following four utility functions and procedures are de�ned.

id1  md(id2), with id1; id2 2 V . Returns the multidimensional node for a
context node, if it exists. If id2 2 V

cxt
and there exists an element (mid; context; id)

in E
cxt

such that id = id2, then mid is returned. If id2 2 V
cxt

and no cor-
responding context edge exists, id2 is returned. If id2 2 V

mld
, id2 is returned.

Notice that there is at most one multidimensional node pointing to any context
node, in other words for every cid 2 V

cxt
there is at most one mid such that

(mid; context; cid) 2 E
cxt

. However, this is a property of MOEM for the spe-
ci�c problem, because of the special way the MOEM graph is constructed for
representing histories, and is not the general case.

boolean  withinSet(cid), with cid 2 V
cxt

. Checks whether the context
node cid is created within the current set U of basic change operations. This
function is used while change operations are in progress, and returns true if cid
was created within the same set. It returns false if cid was created within a
previous set of operations.

The following procedure mEntity(id), with id 2 V
cxt

, creates a new multidi-
mensional node mid pointing to id, and redirects all incoming edges from id to
mid. Note that the procedure alters the graph, but not the information modeled
by the graph: the multidimensional entity created by the procedure has id as its
only facet holding under every world.

mEntity(id) f

createMNode(mid)

addCEdge(mid, [d in start..now], id)

for every (x, l, id) in E
pln
f

addEEdge(x, l, mid)

remEEdge(x, l, id)

g

g

In the procedure newCxt(id1, id2, ts), with id1; id2 2 V
cxt

and ts 2 T ,
id1 is the currently most recent facet of a multidimensional entity, and id2 is a
new facet that is to become the most recent. The procedure arranges the context
speci�ers accordingly.

newCxt(id1, id2, ts) {

remCEdge(md(id1), [d in {x..now}], id1)

addCEdge(md(id1), [d in {x..ts-1}], id1)

addCEdge(md(id1), [d in {ts..now}], id2)

}

The next step is to show how each OEM basic change operation is implemented
using the basic MOEM operations. We assume that each of the OEM operations
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is part of a set U with timestamp ts, and that the node p is the most recent
context node of the corresponding multidimensional entity, if such an entity exists.
This is because changes always happen to the current snapshot of OEM, which
corresponds to the most recent facets of MOEM multidimensional entities. The
most recent context node is the one holding in current time, i.e. the node whose
context speci�er is of the form [d in fsomevalue..nowg].

updNode(p, newval) : If p has been created within U , its value is updated
directly, and the process terminates. Otherwise, if p is not pointed to by a multi-
dimensional node, a new multidimensional node is created for p, having p as its
only context node with context speci�er [d in fstart..nowg]. A new facet is
then created with value newval, and becomes the most recent facet by adjusting
the relevant context speci�ers. Since a node updated by updNode cannot have
outgoing edges, no edge copying takes place in contrast to the case of addArc
that follows.

updNode(p, newval) f

if not withinSet(p) f
if not exists (x, c, p) in E

cxt

mEntity(p)

createCNode(n, newval)

newCxt(p, n, ts)

g else updateCNode(p, newval)

g

addArc(p, l, q) : If p has been created within U , it is used directly: the new
arc is added, and the process terminates. Otherwise, if p is not already pointed to
by a multidimensional node, a new multidimensional node is created for p, having
p as its only context node with context speci�er [d in fstart..nowg]. A new
\clone" facet n is then created by copying all outgoing edges of p to n. In this
case, the context speci�ers are adjusted so that ts is taken into account, and n

becomes the most recent facet as depicted in �gure 2(b) for ts = t1. Finally the
new edge speci�ed by the basic change operation is added to the most recent facet.
Note that, in the frame of representing changes, an MOEM is constructed in such
a way that an entity edge does not point directly to a context node q

c
if there

exists a context edge (q
m
; c; q

c
); instead, it always points to the corresponding

multidimensional node q
m
, if q

m
exists. This is achieved by using the function

md(q) in combination with mEntity(p).

addArc(p, l, q) f

if not withinSet(p) f
if not exists (x, c, p) in E

cxt

mEntity(p)

createCNode(n, 'C')

newCxt(p, n, ts)

for every (p, k, y) in E
pln

addEEdge(n, k, y)

addEEdge(n, l, md(q))

g else addEEdge(p, l, md(q))
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g

remArc(p, l, q) : The process is essentially the same as addArc(p; l; q), with
the di�erence of removing an edge at the end of the process, instead of adding
one. Therefore, remArc is like addArc, except for the last two calls to addEEdge
which are replaced with calls to remEEdge with the same arguments.

creNode(p, val) : this basic change operation is mapped to createCNode(p;
val) with no further steps. New facets will be created when new edges are added
to connect node p to the rest of the graph.

2.3 Applying MOEM Properties

MOEM graphs that represent OEM histories have special characteristics, not
generally encountered in MOEM graphs. In this section we discuss how those
characteristics a�ect the MOEM properties of inherited context, validity, and
reduction to conventional OEMs.

Let G be a multidimensional data graph produced by the process speci�ed in
section 2.2, let e be a multidimensional entity in G, with multidimensional node
m and facets e1,e2,. . . ,en, and let c1,c2,. . . ,cn be the context speci�ers of the re-
spective context edges. Notice that, as already stated, the process in section 2.2
guarantees that at most one multidimensional node points to any context node. In
addition, in the case of representing an OEM history, worlds are time instances.
It is easy to observe that G is context deterministic, because for every multidi-
mensional entity e in G, the contexts c1,c2,. . . ,cn always de�ne disjoint sets of
worlds, thus for any given time instance at most one of e1,e2,. . . ,en may hold.
Consequently, G is an MOEM graph, and the reduction process (de�ned in [9])
will always give an OEM graph, for any time instance in T .

In addition, from the procedures mEntity and newCxt de�ned in section 2.2, it
can be seen that: (a) c1 has the form [d in fstart..somevalue1g], (b) c

n
has

the form [d in fsomevalueN..nowg], and (c) the union of the context speci�ers
c1,c2,. . . ,cn can be represented by [d in fstart..nowg], for every e in G. Recall
that an edge pointing to m is invalid if its inherited context represents worlds
that are disjoint with every c1,c2,. . . ,cn. This however, is not possible in our case
since fstart..nowg covers the whole time domain. Consequently, every edge in
G is valid, therefore G is valid. Edge validity ensures that there exists (at least)
a world under which the edge \survives" (is part of the OEM holding under that
world after reducing MOEM).

Although for every multidimensional entity e in G the corresponding context
speci�ers c1,c2,. . . ,cn cover the complete fstart..nowg time range, the corre-
sponding inherited contexts denote the true life span of the entity and its facets.
To understand why, note that each multidimensional entity e in G corresponds to
a node that existed at some time in the evolution of the OEM graph. The facets of
e correspond to OEM changes that had a�ected that node. Edges pointing to m
correspond to edges that pointed to that node at some time in the evolution of the
OEM graph. In addition, the inherited context of edges pointing to m will be such
as to allow to each one of e1,e2,. . . ,en to \survive" under some world. Therefore,
for every e

i
with 2 � i � n� 1 the explicit context c

i
is also the inherited context
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of the context node e
i
. As we have seen, c1 =[d in fstart..somevalue1g], and

c
n
=[d in fsomevalueN..nowg]; for facets e1 and en incoming edges restrict the

explicit contexts, so that the inherited context of e1 may have a �rst value greater
than start, while the inherited context of e

n
may have a second value smaller

than now.

It is now easy to understand the result of applying MOEM reduction to G.
Given an OEM database O and an MOEM database G that represents the history
of O as de�ned above, it is possible to specify a time instance t and reduce G to
an OEM database O0. Then O0 will be the snapshot of O at the time instance t.

3 OEM History

OEM History is an application developed in Java, which implements the method
described in Section 2 for representing OEM histories. As it can be seen in Fig-
ure 3, OEM History employs a multi-document interface (MDI) with each internal
window displaying a data graph. There are two main windows : one that displays
an MOEM graph that corresponds to the internal model of the application, and
one that always shows the current state of the OEM database. Furthermore, the
user can ask for a snapshot of the database for any time instance in T (the time
domain), that will be presented as an OEM graph in a separate window. The
toolbar on the left side contains buttons that correspond to the four OEM basic
change operations, which can be used only on the window with the OEM depict-
ing the current state of the database. These operations are mapped to a number
of operations that update the internal MOEM data model of the application,
which is the only model actually maintained by OEM History. The current OEM
database is the result of an MOEM reduction for d = now.

Note that the \tick" button in the left toolbar removes nodes that are not ac-
cessible from the root. The last button in the toolbar marks the end of a sequence
of basic change operations, and commits all changes to the database under a com-
mon timestamp. Operations like MOEM reduction and MOEM validity check can
be initiated from the upper toolbar or from the application menu.

In Figure 3, we see the initial state of an OEM database containing informa-
tion about the employees of a company, and the corresponding MOEM graph.
The right window displays the underlying MOEM model, while the left window
displays the result of the MOEM reduction for d = now.

Figure 4 (a) shows the current state of the OEM database and the correspond-
ing MOEM graph after a couple of change sequences. First, at the time instance
10 the salary of John has been increased from 1000 to 2000. Then, at the time
instance 20 a new employee called Peter joined the company with salary 3000.

In Figure 4 (b) two more change sequences have been applied. The salary of
Peter increased to 4000 at the time instance 30, and at the time instance 40

Peter left the company. Note that, as shown on the caption, the left window does
not display the current OEM. Instead it depicts a snapshot of the OEM database
for the time instance 5, which is obtained from reducing the MOEM in the right
window for d = 5. That snapshot is identical to the initial state of the database,
since the �rst change occurred at the time instance 10.

12



Fig. 3. Initial state of example database in OEM History application.

OEM History is available at:
http://www.dblab.ntua.gr/�ys/moem/moem.html

4 Representing Changes in MOEM Databases

Besides representing the history of OEM databases as shown in section 2, MOEM
has another interesting property. In this section we show that MOEM is expressive
enough to model its own histories. In other words, for any MOEM database G
evolving over time it is possible to have an MOEM database G0, such that G0

represents the history of G.

The approach is similar to that of section 2.2; we show that any of the MOEM
basic operations (de�ned in section 2.1) applied to G, can be mapped to a number
of MOEM basic operations on G0, in such a way that G0 represents the history
of G. Figure 5 gives the intuition about this mapping, for three basic operations.
Context edge labels c1,c2,. . . ,cN are context speci�ers involving any number of
dimensions, as in the example of Figure 1, while the dimension d is de�ned in
section 2.2. Note that the use of dimension d in G0 does not preclude G from
using other dimensions that range over time domains. The MOEM operations
depicted in Figure 5 are basic operations occurring on G, and the corresponding
graphs show how those operations transform G0. For simplicity, graphs on the left
side do not contain context speci�ers with the dimension d, and all timestamps
are t1. It is however easy to envisage the case where d is also on the left side
and timestamps progressively increase in value, if we look at Figure 2 (b) and (c)
which follow a similar pattern.
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(a)

(b)

Fig. 4. Example database after (a) two sequences of basic changes, and (b) four se-

quences of basic changes upon the initial database state.

Figure 5(a) shows a facet with id &3 whose value is changed from "A" to "B"
through a call to updateCNode. Figure 5(b) shows the result of an addEEdge op-
eration. Finally, �gure 5(c) depicts the addCEdge basic operation. Among MOEM
basic operations not shown in Figure 5, remEEdge is very similar to addEEdge;
the di�erence is that an entity edge is removed from facet &8 instead of be-
ing added. In addition, remCEdge is similar to addCEdge: instead of adding
one context edge to &6, one is removed. Finally, the MOEM basic operations
createCNode and createMNode are mapped to themselves; G0 will record the
change when the new nodes are connected to the rest of the graph G through
calls to addEEdge or addCEdge.

An MOEM graph G0 constructed through the process outlined above repre-
sents the history of the MOEM graph G. In contrast to the case of OEM histories,
where a world is de�ned by only one dimension d representing time, in the case
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Fig. 5. Modeling Multidimensional OEM basic operations with MOEM.

of MOEM histories a world for G0 in general involves more than one dimensions,
including the time dimension d. Therefore, by specifying a value t for d we actu-
ally de�ne the set of worlds for which d = t. In that set, dimensions other than d

may have any combination of values from their respective domains. The process
of reducing an MOEM graph under a set of worlds, instead of under a single
world, is called partial reduction and, as with full reduction, involves intersecting
the given set of worlds with those represented by the inherited contexts of edges
and nodes in the graph. Therefore, by applying the process of partial reduction
to G0 for any time instance t 2 T , G0 gives the snapshot of the MOEM database
G at that time instance.

5 Conclusions and Future Work

In this paper we explained in depth how Multidimensional OEM, a graph model
for context-dependent semistructured data, can be used to represent the history
of an OEM database. We discussed the MOEM properties in this particular case,
and showed that temporal OEM snapshots can be obtained from MOEM. We
presented OEM History, an implemented system, and demonstrated through an
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example the process of using an underlying MOEM database to model OEM
changes. In addition, we showed that MOEM is capable to model changes oc-
curring not only in conventional OEM databases, but in Multidimensional OEM
databases as well.

The applicability of MOEM is not exhausted in representing histories of semistruc-
tured data; context-dependent data are of increasing importance in a global envi-
ronment such as the Web. We have implemented a set of tools for MSSD, which
we used to develop the OEM History application. We continue extending this
infrastructure that will facilitate the implementation of new MSSD and MOEM
applications. Our current work is focused on the implementation of MQL, a mul-
tidimensional query language.
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