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Motivation

Medical image classification

Given a set of n paired observations {(Ii , yi )}1≤i≤n where

Ii is an medical image and
yi ∈ R is the classification label

the goal is to learn a classification function f .

Problems

1 The representation of φ(I).

Bag of Words approach
Graph representation.

2 Supervised statistical learning framework

arg min
f ∈F

λΩ(f ) +

Empirical Risk︷ ︸︸ ︷
1

n

n∑
i=1

L(f (φ(Ii )), yi )

where L is the loss function and λΩ(f ) is the regularization term.
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Introduction to Graphs

What is a graph and why is it interesting?

Definition

A labeled graph G is defined as a triplet (V ,E ,L), where V is the vertex
set and E ⊆ V ×V is the edge set which represents a binary relation on V
and L : X 7→ Σ is a function assigning a label from an alphabet Σ to each
element of the set X , which can be either V ,E or V ∪ E .

Areas of application

Chemoinformatics Bioinformatics SNA Computer Vision
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Introduction to Graphs

Graph Comparison Problem

Definition

Given a set G of graphs, the problem of graph comparison is defined as a
function

k : G × G 7→ R

such that k(G ,G ′) for G ,G ′ ∈ G quantifies the similarity of G and G ′.

2nd Approach - R-convolution Kernels

⇒ . . .

Calculating all subgraphs is at least as hard as deciding whether two
graphs are isomorphic [Gärtner 03]
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Introduction to Graphs

Graph kernels
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︷ [Gärtner 03] O(n2v 6) X X X X

[Mahé 04] X X
[Vishwanathan 10] O(n2v 3) X X X X
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s

︷︸︸
︷ [Borgwardt 05] O(n2v 4) X X X X

[Ralaivola 05] X X
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︷︸︸
︷ [Horváth 04] X X

[Shervashidze 09] O(vdk−1) X
[Costa 10] X X
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s
︷

︸︸
︷ [Ramon 03] O(n2v 2h4d) X X

[Bach 08] X X
[Mahé 09] X X

[Shervashidze 11] O(nhe + n2hv) X X

1where n is the number of graphs, v is the maximal number of nodes, e is
the maximal number of edges, h is the height of subtree patterns, d is the
maximum degree and k is the size of graphlets.
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The pyramid quantized Weisfeiler-Lehman graph representation

Table of Content

1 Introduction to Graphs

2 The pyramid quantized Weisfeiler-Lehman graph representation
Overview
The Weisfeiler-Lehman algorithm
The pyramid quantization strategy
A sequence of discretely labeled graphs
Learning the combination of the pyramid levels.

3 Experiments
fMRI analysis problem
3D shape classification

4 Other Problems
fMRI analysis and regularization methods
Neuromuscular disease classification

5 Conclusion

Katerina Gkirtzou (ECP-INRIA) Ph.D. Thesis Defense 9



The pyramid quantized Weisfeiler-Lehman graph representation Overview

Overview of the WLpyramid

Given a set G = {Gi = (Vi ,Ei ,Li )}1≤i≤n where Li : Vi 7→ Rd

1 A pyramid quantization of the label space.

2 Transformation of the initial graphs.

3 Produce subtree features with Weisfeiler-Lehman algorithm.

4 Learning the combination of the subtree features.

Why Weisfeiler-Lehman?

1 Computational time O(nhe)

n the number of graphs
e the maximal number of edges and and
h the height subtree features.

2 Competitive accuracy in several classification benchmark data
sets [Shervashidze 11].
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The pyramid quantized Weisfeiler-Lehman graph representation The Weisfeiler-Lehman algorithm

The Weisfeiler-Lehman test of isomorphism [Weisfeiler 68]

Given labeled graphs G and G ′

G G'

  2    3  

  3    3    1  

  1    1  

  3    3  

  3    2    2  

  1    1  

Label compression via hashing

 1,2   4  

 1,3 

 3,12

  5  

 2,13

3,123

  6  

 2,33

3,133

  7  3,223

  8  

  9  

  10 

  11 

Subtree Pattern of
Compressed label 9

3

1 2 3
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The pyramid quantized Weisfeiler-Lehman graph representation The Weisfeiler-Lehman algorithm

Weisfeiler-Lehman subtree features

Subtree patterns of depth 0.

G G'

  2    3  

  3    3    1  

  1    1  

  3    3  

  3    2    2  

  1    1  

Subtree patterns of depth 1.

G G'

  7    8  

  9    10   5  

  5    5  

  7    11 

  9    7    6  

  5    4  

Original node
labels Σ0︷ ︸︸ ︷ Compressed node labels Σ1︷ ︸︸ ︷

Labels {Σ0,Σ1} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
φ(1)(G ) = (3, 1, 3, 0, 3, 0, 1, 1, 1, 1, 0)
φ(1)(G ′) = (2, 2, 3, 1, 1, 1, 2, 0, 1, 0, 1)

φ(h)(G ) are histograms of occurences of the subtree patterns up to depth
h in graph G .
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The pyramid quantized Weisfeiler-Lehman graph representation The pyramid quantization strategy

The pyramid quantization strategy

Given a set G = {Gi = (Vi ,Ei ,Li )}1≤i≤n where Li : Vi 7→ Rd

Coarser Level Q(0)

−20 −15 −10 −5 0 5 10
−20
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−10
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5

Less Coarse Level Q(1)

−20 −15 −10 −5 0 5 10
−20

−15

−10

−5
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5

10

Less Coarse Level Q(2)

−20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

10 . . . Finer Level Q(L)

where L = dlog2|V |e and |V | =
∑n

i |Vi | [Grauman 07].
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where L = dlog2|V |e and |V | =
∑n

i |Vi | [Grauman 07].
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The pyramid quantized Weisfeiler-Lehman graph representation The pyramid quantization strategy

Data guided pyramid quantization scheme

Given labeled graphs G and G ′

G G'

[2 5] [3 6]

[3 6] [3 7] [1 3]

[1 3] [1 3]

[3 6] [3 7]

[3 6] [2 6] [2 4]

[1 3] [1 2]

Notes

Ward’s minimum variance method over the
image of V under L.

Selecting L = dlog2De, where D ≤ |V | the
number of unique values in the image of V
under L
Each level l has 2l discrete labels.

[3 6] [3 7] [2 4] [2 5] [2 6] [1 2] [1 3]

1

2

3

4

5

6

7

[3 6] [3 7] [2 4] [2 5] [2 6] [1 2] [1 3]

1

2

3

4

5

6

7

 

 

1 label

2 labels

4 labels

8 labels
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The pyramid quantized Weisfeiler-Lehman graph representation A sequence of discretely labeled graphs

Transform the initial graphs as a sequence of graphs

The pyramid quantization of label space

Coarser Level Q(0)

−20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

Less Coarse Level Q(1)

−20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

10

. . .

Finer Level Q(L)

Sequence of discretely labeled graphs

G = (V ,E ,L)
Q(l) ◦ L
≈
∀l

(
G (0), . . . ,G (L)

)
=
(

(V ,E ,L(0)), . . . , (V ,E ,L(L))
)

−−−−−−−−−−−−→
Increasing granularity

−−−−−−−−−−−−−−−−−−−−−−→
Increasing granularity

where L(l) : V → Σ
(l)
0 , |Σ(l)

0 | = 2l and l ∈ {0, . . . , L}.
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The pyramid quantized Weisfeiler-Lehman graph representation A sequence of discretely labeled graphs

A sequence of discretely labeled graphs

Given labeled graphs G and G ′

G G'

[2 5] [3 6]

[3 6] [3 7] [1 3]

[1 3] [1 3]

[3 6] [3 7]

[3 6] [2 6] [2 4]

[1 3] [1 2]

Data guided pyramid quantization.

[3 6] [3 7] [2 4] [2 5] [2 6] [1 2] [1 3]
 

 

2 Labels

4 Labels

Quantization level 1 with 21

number of labels.

G G'

1 1

1 1 2

2 2

1 1

1 1 1

2 2

Quantization level 2 with 22

number of labels

G G'

3 1

1 1 4

4 4

1 1

1 3 2

4 4
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The pyramid quantized Weisfeiler-Lehman graph representation Learning the combination of the pyramid levels.

Creating and combining subtree features

Run Weisfeiler-Lehman on each quantization level

G =
(

G (0), . . . ,G (L)
)

Weisfeler−−−−−→
Lehman

(
φ

(0)
(h)(G (0)), . . . , φ

(L)
(h)(G (L))

)
= φ̂(h)(G )

where φ
(l)
(h)(G (l)) are histograms of occurences of the subtree patterns up

to depth h at the quantization level l in graph G

Learning to combine the quantization levels

1 Learn the selection of the subtree features φ̂(h)(G ).

2 Combine the subtree features φ
(l)
(h)(G (l)) per level l into a kernel and

then learn the combination of kernels.
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The pyramid quantized Weisfeiler-Lehman graph representation Learning the combination of the pyramid levels.

Learn the subtree patterns selection

Labeled training data {( ̂φ(h)(Gi ), yi )}1≤i≤n ∈ (N× R)n where

̂φ(h)(Gi ) is the concatination of histograms of the occurences of subtree
patterns up to depth h of graph Gi across all quantization levels,
yi is the ground truth label and

Elastic Net [Zou 05b]

arg minw∈Rdλ1‖w‖1+λ2‖w‖2
2+ 1

n

∑n
i=1

(
〈w , ̂φ(h)(Gi )〉 − yi

)2

︸ ︷︷ ︸
`1 norm

︸ ︷︷ ︸
`2 norm

︸ ︷︷ ︸
Squared loss

λ1, λ2 are scalar parameters controling the degree of regularization.
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The pyramid quantized Weisfeiler-Lehman graph representation Learning the combination of the pyramid levels.

The intersection Weisfeiler-Lehman kernel

Subtree patterns of depth 0.

G G'

  2    3  

  3    3    1  

  1    1  

  3    3  

  3    2    2  

  1    1  

Subtree patterns of depth 1.

G G'

  7    8  

  9    10   5  

  5    5  

  7    11 

  9    7    6  

  5    4  

Subtree
patterns h = 0︷ ︸︸ ︷ Subtree patterns h = 1︷ ︸︸ ︷

Labels {Σ0,Σ1} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
φ

(l)
(1)

(G (l)) = (3, 1, 3, 0, 3, 0, 1, 1, 1, 1, 0)

φ
(l)
(1)

(G ′(l)) = (2, 2, 3, 1, 1, 1, 2, 0, 1, 0, 1)

min
(
φ

(l)
(1)

(G (l)), φ
(l)
(1)

(G ′(l))
)

= (2, 1, 3, 0, 1, 0, 1, 0, 1, 0, 0)

The intersection Weisfeile-Lehman kernel is defined :

k
(h)
i−WLsubtree(G (l),G ′(l)) =

|Σ0∪Σ1|∑
j

min
(
φ

(l)
(1)(G (l)), φ

(l)
(1)(G ′(l))

)
j
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The pyramid quantized Weisfeiler-Lehman graph representation Learning the combination of the pyramid levels.

Multiple Kernel Learning

Problem

For each pair of graphs G (l),G ′(l) for all the pyramid levels:(
K

(0)
(h) (G (0),G ′(0)), . . . ,K

(L)
(h) (G (l),G ′(L))

)
we would like to learn a linear combination of them:

K(h)(G ,G ′) =
L∑

l=0

dlK
(l)
(h)(G (l),G ′(l)), with dl ≥ 0,

L∑
l=0

dl = 1.

Solutions

Multiple kernel learning

Average weighted kernel
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Experiments fMRI analysis problem

fMRI Analysis

Key information

1 Inherent spatial structure brains

2 Voxel activation is a continuous
value

⇓

Solution!

Represent fMRI as graphs with
continuous labels.
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Experiments fMRI analysis problem

Dataset

Cocaine Addiction Dataset

16 cocaine addicted vs 17 healthy subjects

Drugstroop experiment with two varying conditions

the cue shown and
the monetary reward.

Input One contrast map per subject that is transformed into a
graph.

Objective The classification between cocaine abuser and control group.

Drugstroop Experiment
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Experiments fMRI analysis problem

Graph Transformation

Contrast map

Elastic Net−−−−−−−→

Selected voxels

knn
←−−

Graph
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Experiments fMRI analysis problem

Performance

GKRR Elastic Net WLpyramid Combined WL+voxels

0.5

0.55

0.6

0.65

0.7

0.75
Accuracy for different methods

M
ea

n 
A

cc
ur

ac
y

WLpyramid vs Elastic Net on raw voxels

Wilcoxon signed rank with p = 0.02 show statistical significance.
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Experiments fMRI analysis problem

Performance per pyramid quantization level
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Experiments fMRI analysis problem

Visualization of learned function

Brain Regions

Control

Cocaine
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Experiments fMRI analysis problem

Visualization of learned function

Rostral Anterior Cingulate
Cortex

In cocaine addicted subjects
deactivates during the drug
Stroop experiment as
compared to baseline.

Its activity is normalized by
oral methylphenidate where
the dopamine transporters
increase the extracellular
dopamine, an increase
which is associated with
lower task-related
impulsivity.

Control

Cocaine
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Experiments 3D shape classification

3D shape classification

3D shape problems

Storage

Classification

Retrieval

Areas of applications

3D Game Chemoinformatics Cultural heritage
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Experiments 3D shape classification

3D shape classification

3D shape problems

Storage

Classification

Retrieval

CurvatureAreas of applications

3D Game Chemoinformatics Cultural heritage
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Experiments 3D shape classification

3D shape datasets

Muscle Dataset
H

ea
lt

h
y

su
b

je
ct

P
a

ti
en

t

27 patients vs 14 healthy
subjects

MRI images of the calf muscles

Segmented into 7 muscles

SHREC 2013 Dataset

20 classes of generic objects,
such as bed, biplane, mug, etc.

Each class contains 18 models.

In total 360 3D objects.
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Experiments 3D shape classification

Performance on the muscle dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6
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0.8
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1

FPR

T
P

R

 

 

WL pyramid Kernel
Pyramid BoW
Render Image Baseline
Combined WL+Render

WLpyramid
pyramid BoW Rendering Combined

Our Work

Accuracy 78.00% 73.00% 75.50% 82.93%

AUC 0.6410 0.6361 0.6300 0.6648
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Experiments 3D shape classification

Performance on SHREC 2013

Class
WLpyramid

pyramid BoW Rendering Combined
Our Work

Bird 0.85 0.83 0.85 0.86
Bicycle 0.84 0.87 0.90 0.90
Biped 0.89 0.88 0.99 0.99
Biplane 0.60 0.63 0.68 0.69
Bird 0.73 0.73 0.80 0.80
Bottle 0.76 0.76 0.79 0.80
Car 0.78 0.79 0.80 0.80
CellPhone 0.74 0.80 0.88 0.89
Chair 0.69 0.68 0.70 0.72
Cup 0.85 0.84 0.88 0.88
Desklamp 0.80 0.80 0.88 0.89
Fish 1.00 1.00 1.00 1.00
Floorlamp 0.80 0.77 0.89 0.89
Insect 0.64 0.60 0.62 0.66
Monoplane 0.84 0.82 0.88 0.90
Mug 0.82 0.82 0.85 0.87
Phone 0.83 0.74 0.72 0.83
Quadruped 0.89 0.86 0.97 0.98
Sofa 0.76 0.75 0.74 0.75
Wheelchair 0.81 0.79 0.88 0.90

Average 0.80 0.79 0.84 0.85

Katerina Gkirtzou (ECP-INRIA) Ph.D. Thesis Defense 31



Experiments 3D shape classification

SHREC 2013 - Visualization of the learned weights

Subtree patterns of depth 0

Subtree patterns up to depth 1

Subtree patterns up to depth 2
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Other Problems fMRI analysis and regularization methods

fMRI analysis and regularization methods

Regularizer λΩ(w)

LASSO [Tibshirani 96] λ1‖w‖1

Elastic Net [Zou 05a] λ1‖w‖1 + λ2‖w‖2
2

k-support norm [Argyriou 12] λ


`2 norm︷ ︸︸ ︷

k−r−1∑
i=1

(|w |↓i )2 + 1
r+1

`1 norm︷ ︸︸ ︷(
d∑

i=k−r
|w |↓i

)2



1
2

where

λ is a scalar controlling the degree of regularization,

|w |↓i is the ith largest element of the vector |w |,
k ∈ {1, . . . , d} is a scalar, user supplied parameter that correlates
with the cardinality of w and

r is the unique integer in {0, . . . , k − 1} automatically selected by the
algorithm.
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Other Problems fMRI analysis and regularization methods

Quantitative Results

Picture viewing dataset
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k-support norm vs LASSO and Elastic Net

Wilcoxon signed rank test with p = 0.05 show statistical significance.
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Other Problems fMRI analysis and regularization methods

Qualitative Results

Cocaine addiction dataset
LASSO k-support norm
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Other Problems Neuromuscular disease classification

Neuromuscular disease classification
FSH

DM1

the mean T1/T2 signal,

the Signal to Noise Ration,

the Fractional Anisotropy,

the trace of the diffusion tensor,

the volume of the tensor, etc.
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Other Problems Neuromuscular disease classification

k-support regularized SVM

The Support Vector Machine is defined as the following optimization
problem:

min
w∈Rd ,b∈R,ξ∈Rn

λ‖w‖2
2 +

n∑
i=1

ξi

s.t. yi (〈w , xi 〉+ b) ≥ 1− ξi , ξi ≥ 0, ∀i .

where

λ is a scalar, user supplied parameter controling the degree of
regularization,

k ∈ {1, . . . , d} is a scalar, user supplied parameter that negative
correlates with the cardinality of w and

‖w‖spk is the k-support penalty.

Advantage

Solution is sparse but correlated subset of discriminative variables.
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Other Problems Neuromuscular disease classification

Performance
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ksupport reguralized SVM
ksupport norm
k nearest neighbor
support vector machine

Method AUC

ksup-SVM - Our work 0.756
k-support with SL 0.726

knn 0.537
SVM 0.494

Method Accuracy

ksup-SVM - Our work 77 ± 0.013
k-support with SL 74 ± 0.006

knn 61 ± 0.015
SVM 59 ± 0.015

Chance is 60%.

ksup-SVM vs the rest methods

Wilcoxon signed rank test with p � 10−9 show statistical significance.

Katerina Gkirtzou (ECP-INRIA) Ph.D. Thesis Defense 39



Other Problems Neuromuscular disease classification

Performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

FSH vs DM1

 

 

ksupport reguralized SVM
ksupport norm
k nearest neighbor
support vector machine

Method AUC

ksup-SVM - Our work 0.756
k-support with SL 0.726

knn 0.537
SVM 0.494

Method Accuracy

ksup-SVM - Our work 77 ± 0.013
k-support with SL 74 ± 0.006

knn 61 ± 0.015
SVM 59 ± 0.015

Chance is 60%.

ksup-SVM vs the rest methods

Wilcoxon signed rank test with p � 10−9 show statistical significance.

Katerina Gkirtzou (ECP-INRIA) Ph.D. Thesis Defense 39



Other Problems Neuromuscular disease classification

Structured and DTI features vs Structured features only
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Combined T1−T2−DTI features
T1−T2 features

Features Used AUC

MRI and DTI 0.756
MRI only 0.697

Features Used Accuracy

MRI and DTI 77 ± 0.013
MRI only 73 ± 0.006

Structured and DTI features vs Structured features only

Wilcoxon signed rank test with p � 0.05 show statistical significance.
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Conclusion
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Conclusion

Contributions - Methodological

The pyramid quantized Weisfeiler-Lehman graph representation

A novel algorithm for comparing graphs with vector labels.

Based on subtree patterns.

Linear computation time in the number of graphs, in the number of
edges in the graphs and in the depth of subtree patterns.

Evaluation on two domains

fMRI analysis and
3D shape classification.

Visualizations of the learned functions provide interpretability.

k-support regularized SVM

A novel regularized SVM algorithm.

Correlated sparse solution under the SVM framework.

Evaluation on a neuromuscular disease task.
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Conclusion

Contributions

Methodological

Code from both algorithms is available online under GNU-GPL at
http://cvc.centrale-ponts.fr/personnel/gkirtzou/code

Clinical and Applications

Investigate the applicability of sparsity regularizers in fMRI analysis.

In the fMRI analysis, we saw that the interconnections between voxels
can contain additional information about brain structure.

In the neuromuscular dystrophy classification task, we saw that
features extracted from DTI images provide significant information.

Interpretation of 3D shape meshes as annotated graphs.
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Conclusion

Future Work

Medical image analysis

Evaluation of k-support norm regularization on fMRI analysis problem
in larger scale.

Evaluation of k-support regularized SVM on neuromuscular disease
discrimination in larger scale.

Exploration of different constructions of the graphs from fMRI.

Graph kernels

Comparison on partially matching subtree patterns.

Comparison on partially labeled graphs.
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Conclusion

Publications

K. Gkirtzou, and M. Blaschko

The pyramid quantization Weisfeiler-Lehman graph representation

Submitted to Pattern Recognition

K. Gkirtzou, J. Honorio, D. Samaras, R. Goldstein and M. Blaschko

FMRI analysis of cocaine addiction using k-support sparsity

In International Symposium on Biomedical Imaging 2013

Oral Presentation - 19% acceptance rate

K. Gkirtzou, DJ. Francois, G. Bassez, A. Sotiras, A.Rahmouni, T. Varacca,
N. Paragios and M. Blaschko

Sparse classification with MRI based markers for neuromuscular disease
classification.

In LNCS series of Machine Learning in Medical Imaging 2013

Oral Presentation - 26% acceptance rate

K. Gkirtzou, J. Honorio, D. Samaras, R. Goldstein and M. Blaschko

fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics

In LNCS series of Machine Learning in Medical Imaging 2013

Poster Presentation - 56% acceptance rate
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Subtree patterns
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Extra slides

Walk, path and cycle on graph
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Extra slides

Binning strategies

Fixed binning
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Data guided binning
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ISBI 2013

fMRI Analysis of Cocaine Addiction using k-support
sparsity

Exploring regularization techniques for fMRI analysis

K. Gkirtzou1,2, Jean Honorio3, Dimitris Samaras1,3, Rita Goldstein4,
Matthew B. Blaschko1,2

1 2 3 4

10th April, 2013
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ISBI 2013 Introduction

fMRI Analysis

Goal of fMRI analysis

The goal of fMRI data analysis is to
detect correlations between brain
activation and a task the subject
performs during the scan.

Common problems in fMRI analysis

high-dimensional space

small number of samples

high levels of noise

Gkirtzou K. et al. (ECP) ISBI 2013 53



ISBI 2013 Introduction

Related Work

Previous Related Work

Generalized Linear Model

Support vector machines [Song 11]

Kernel canonical correlation
analysis [Hardoon 07, Blaschko 09, Blaschko 11].

Independent component analysis [Bartels 04, Bartels 05]

Regression models (OLS, Ridge Regression, LASSO, Elastic
Net) [Carroll 09, Ng 12].

Regularized methods explored in this work

LASSO [Tibshirani 96]

Elastic Net [Zou 05a]

k-support norm [Argyriou 12]
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ISBI 2013 Methods

Sparsity regularization - Mathematical framework

Labeled training data {(x1, y1), . . . , (xn, yn)} ∈
(
Rd × R

)n
xi is the output of a fMRI scan
yi is the ground truth label

Loss function

arg min
w∈Rd

λΩ(w) +
1

n

n∑
i=1

(〈w , xi 〉 − yi )
2

λ is a scalar parameter controling the degree of regularization
Ω is a scalar valued function monotonic in a norm of w .
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Labeled training data {(x1, y1), . . . , (xn, yn)} ∈
(
Rd × R

)n
xi is the output of a fMRI scan
yi is the ground truth label

Loss function

arg min
w∈Rd

λΩ(w) +
1

n

n∑
i=1

(〈w , xi 〉 − yi )
2

Penalty function

Regularizer λΩ(w)

LASSO [Tibshirani 96] λ1‖w‖1

Elastic net [Zou 05a] λ1‖w‖1 + λ2‖w‖2
2
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k support norm - Penalty function

The k-support norm [Argyriou 12] can be computed as

λΩ(w) = λ‖w‖spk = λ


`2 norm︷ ︸︸ ︷

k−r−1∑
i=1

(|w |↓i )2 +
1

r + 1

`1 norm︷ ︸︸ ︷(
d∑

i=k−r
|w |↓i

)2



1
2

where

λ is a scalar, user supplied parameter controling the degree of
regularization,

|w |↓i is the ith largest element of the vector |w |,
k ∈ {1, . . . , d} is a scalar, user supplied parameter that correlates
with the cardinality of w and

r is the unique integer in {0, . . . , k − 1} automatically selected by the
algorithm.
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Dataset 1

Cocaine Addiction Dataset

16 cocaine addicted vs 17 control subjects

Drugstroop experiment with two varying conditions

the cue shown
the monetary reward

Using one contrast map per subject

The discriminative task is the classification between cocaine abuser
and control group

Drugstroop Experiment
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Dataset 2

Natural viewing dataset

A healthy subject in a free-viewing setting

Using the whole time series

The discriminative task is the prediction of a “Temporal Contrast”
variable

Experimental setup

100 random permutations trials

Training on the 80% of data

Testing on the rest 20% of data
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Quantitative results
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Wilcoxon signed rank test with p-value � 0.05
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Qualitative results

LASSO k-support norm

Cocaine addiction dataset
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Qualitative results

LASSO k-support norm

Cocaine addiction dataset
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Rostral Anterior Cingulate Cortex

Rostral Anterior Cingulate Cortex

In cocaine addicted subjects
deactivates during the drug Stroop
experiment as compared to baseline.

Its activity is normalized by oral
methylphenidate where the dopamine
transporters increase the extracellular
dopamine, an increase which is
associated with lower task-related
impulsivity.

In cigarette smokers was responsive to
pharmacotherapeutic interventions.

In depression may be a marker of
treatment response.

k-support norm

Cocaine addiction dataset
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Conclusions - Future Work

Conclusions

The k-support norm can boost the predictive performance of the
LASSO and elastic net.

The LASSO does not show a meaningful sparsity pattern.

The brain regions implicated in addiction by the k-support norm
coincide with previous results on addiction.

Code available online ::
http://www.centrale-ponts.fr/personnel/gkirtzou/code/

Future Work

Exploring the structural information of the brain
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Neuromuscular Diseases

Problem

Myopathies are neuromuscular
diseases that result functional
anomalies including

fat infiltration
atrophy
weakness of the muscle and
paralysis.

In this study, we focus on
categorization patients between
Facioscapulohumeral muscular
dystrophy (FSH) and myotonic
muscular dystrophy type 1
(DM1) using MRI based
markers.

T1-weighted MR images of the calf.

(d) FSH

(e) DM1
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Our approach and Related Work

Our approach

1 Features extracted from both structured MR Imaging (T1 and T2
weighted) and Diffusion Tensor Imaging

2 a novel structured sparsity algorithm, the k-support regularized SVM
(ksup-SVM)

Related Work

DTI on Neuroimaging studies

Alzheimer’s disease [Klöppel 08]
male-female or older-younger classification [Lao 04]
temporal classification of block design fMRI data [LaConte 05]
the study of autism spectrum disorder [Ingalhalikar 11]

DTI on different clinical scenarios

the human tongue [Gilbert 05]
the heart muscle [Gilbert 05]
the human calf muscle [Galban 04]
Gkirtzou K. et al. (ECP) MLML 2013 67



MLMI 2013 Materials and Methods

Data description

Dataset

25 subjects, 10 affected by FSH and 15 affected by DM1.

T1-weighted, T2-weighted and Diffusion Tensor Images of the calf
muscle.

Obtained volumes 64× 64× 20 voxels with voxel resolution
3.125mm× 3.125mm× 7mm

Color Muscle
Yellow the anterior tibialis
Cyan the extensor digitorum longus

Magenta the peroneous longus
White the posterior tibialis
Blue the soleus

Green the lateral gastrocnemius
Red the medial gastrocnemius
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Structural and DTI features

We extract for every muscle the following features from the structural
data:

1 the absolute volume,
2 the mean T1 signal,
3 the mean T2 signal, and
4 the Signal to Noise Ration (SNR).

and from the DTI data:
1 the Fractional Anisotropy (FA),
2 the trace of the diffusion tensor,
3 the volume of the tensor,
4 the eigenvalues (L1, L2, L3),
5 the planar coefficient (Cp), and
6 the linear coefficient (Cl).

Number of Features

4 Structured features × 8 DTI features × 7 muscles = 84 features
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k support norm - Regularization term

The k-support norm [Andreas Argyriou 12] can be computed as

λΩ(w) = λ‖w‖spk = λ


`2 norm︷ ︸︸ ︷

k−r−1∑
i=1

(|w |↓i )2 +
1

r + 1

`1 norm︷ ︸︸ ︷(
d∑

i=k−r
|w |↓i

)2



1
2

where

λ is a scalar, user supplied parameter controling the degree of
regularization,

|w |↓i is the ith largest element of the vector |w |,
k ∈ {1, . . . , d} is a scalar, user supplied parameter that negative
correlates with the cardinality of w and

r is the unique integer in {0, . . . , k − 1} automatically selected by the
algorithm.
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k-support regularized SVM

The Support Vector Machine is defined as the following optimization
problem:

min
w∈Rd ,b∈R,ξ∈Rn

λ‖w‖2
2 +

n∑
i=1

ξi

s.t. yi (〈w , xi 〉+ b) ≥ 1− ξi , ξi ≥ 0, ∀i .

where

λ is a scalar, user supplied parameter controling the degree of
regularization,

k ∈ {1, . . . , d} is a scalar, user supplied parameter that negative
correlates with the cardinality of w and

‖w‖spk is the k-support penalty.

Advantage

Solution is sparse but correlated subset of discriminative variables.
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The k-support norm regularized SVM (ksup-SVM) is defined as the
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Experimental Setting

Methods under comparison:

ksup-SVM with k ∈ {1, 10, 20, 40, 80} and λ ∈ {1, 10, 1000}.
knn with k ∈ {1, 3, 5, 7, 10}
SVM with kernel functions

linear,
polynomial of third degree, and
radial basis function (RBF)

with a soft-margin parameter C ∈ {10−3, 100, 103}.
k-support norm with k ∈ {1, 10, 20, 40, 80} and λ ∈ {1, 10, 1000}.

1000 trials of random split, with 80% of the data used for training
and the rest 20% for testing.
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Performance
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ksupport reguralized SVM
ksupport norm
k nearest neighbor
support vector machine

Method AUC
ksup-SVM 0.756

k-support norm 0.726
knn 0.537

SVM 0.494

Method Accuracy
ksup-SVM 77 ± 0.013

k-support norm 74 ± 0.006
knn 61 ± 0.015

SVM 59 ± 0.015
Chance is 60%.

ksup-SVM vs rest methods

Wilcoxon signed rank test with p-value << 10−9
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Structured and DTI features vs Structured features only
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Structured and DTI features vs Structured features only
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Feature Evaluation
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Feature Evaluation on anterior tibialis
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Feature Evaluation on medial gastrocnemius
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Conclusion

We studied the more difficult and clinically relevant task of
discriminating between two myopathies (FSH vs DM1).

MRI markers, and DTI tensor features in particular, can discriminate
between disease conditions.

Sparsity regularization appears to be a more important property of
the learning algorithm than non-linearity.

We introduced a novel machine learning algorithm, the ksup-SVM.

The ksup-SVM achieved a mean accuracy of 77%.

Source code is available

https://gitorious.org/ksup-svm
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Questions
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