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Abstract

MicroRNAs (miRNAs) are small single stranded RNAs, on average 22nt

long, generated from endogenous hairpin–shaped transcripts with post

transcriptional activity. Although many computational methods are

currently available for identifying miRNA genes in the genomes of var­

ious species, very few algorithms can accurately predict the functional

part of the miRNA gene, namely the mature miRNA. We introduce a com­

putational method that uses a Naive Bayes classifier to identify mature

miRNA candidates based on sequence and secondary structure infor­

mation of the miRNA precursor. Specifically, for each mature miRNA,

we generate a set of negative examples of equal length on the respec­

tive precursor(s). The true and negative sets are then used to estimate

probability distributions for the sequence and secondary structure com­

position on each position along the mature or in flanking regions around

it, as well as for the distances of the starting and ending position of the

mature from the precursor’s hairpin and ends. The divergence between

these distributions is estimated using the symmetric Kullback­Leibler

metric. The features at which the two distributions differ significantly

and consistently over a 10­fold cross­validation procedure are used as

features for training the Naive Bayes classifier. We used experimentally

verified human and mouse miRNA data to train the classifier and a per­

formance of AUC ≈ 0.88 was achieved using a consensus averaging

over a 10–fold cross–validation procedure. Moreover, we examined four

strategies in order to provide the most accurate candidate mature, based

on the ranking provided by our model. For each strategy, the confidence

that the computational truth was ±6nt away from the true mature was:

a) 86.88% for the top scorer, b) 88.25% for the middle point of 4 top

scorers, c) 89.34% for the mean value of 4 top scorers and d) 87.83%

for the top scorer and its duplex. Our findings suggest that position

specific sequence and structure information and the distance features



combined with a simple Bayes classifier achieve a good performance on

the challenging task of mature miRNA identification.



Περίληψη

Τα microRNAs είναι µικρά µονόκλωνα µόρια RNAs, µε µήκος 22 νουκ-

λεοτιδίων κατά µέσο όρο, τα οποία παράγονται από ενδογενή µετάγραφα µε

µορφή ‘φουρκέτας’ και έχουν µέτα–µεταγραφική δραστηριότητα. Παρόλο

που υπάρχουν πολλές υπολογιστικές µέθοδοι διαθέσιµες για την αναγ-

νώριση microRNA γονιδίων στο γονιδίωµα πολλών οργανισµών, πολύ λίγοι

αλγόριθµοι µπορούν µε ακρίβεια να προβλέψουν το λειτουργικό µέρος ενός

miRNA γονιδίου, γνωστό ως ώριµο miRNA. Στην εργασία αυτή προτείνουµε

µια νέα υπολογιστική µέθοδος, η οποία χρησιµοποιεί έναν Naive Bayes

classifier για να αναγνωρίζει υποψήφια ώριµα µόρια miRNA µε ϐάση την

ακολουθία και την δευτεροταγή δοµή ενός πρώιµου miRNA (precursor

miRNA). Συγκεκριµένα, για κάθε ώριµο miRNA, παράγουµε ένα σύνολο

αρνητικών παραδειγµάτων ίσου µεγέθους, από τα αντίστοιχα πρώιµα µόρια

miRNA. Τα δείγµατα από τα πραγµατικά και αρνητικά δεδοµένα χρησι-

µοποιούνται κατόπιν για να εκτιµήσουµε τις κατανοµές πιθανοτήτων των

ϑέσεων που ϐρίσκονται είτε κατα µήκος του ώριµου µορίου, είτε σε περι-

οχες γύρω από αυτό, κρατώντας πληροφορίες για την ακολουθιά και την

δευτεροταγή δοµή της ϑέσης, καθώς και για την εκτίµηση των αποστάσεων

της αρχικής και τελικής ϑέσης ενός ώριµου µορίου από τα όρια του κον-

τινότερου σχηµατισµού ‘φουρκέτας’ του πρώιµου µορίου, καθώς και από

τα άκρα του ίδιου του πρώιµου µορίου. Η απόκλιση µεταξύ αυτών των

κατανοµών υπολογίζεται από την συµµετρική απόκλιση των Kullback–

Leibler. Τα χαρακτηριστικά των οποίων οι δύο κατανοµές διαφέρουν

σηµαντικά χρησιµοποιούνται ως χαρακτηριστικά για την εκπαίδευση του

Naive Bayes classifier. Χρησιµοποιούµε πειραµατικά επιβεβαιωµένα miRNA

δεδοµένα από άνθρωπο και ποντίκι για την εκπαίδευση του µοντέλου µας

και επιτυχγάνουµε µέση απόδοση AUC ≈ 0.88 χρησιµοποιώντας 10–

fold cross validation. Επιπλέον εξετάζουµε τέσσερις στρατηγικές για να

παρέχουµε µε µεγαλύτερη ακρίβεια ένα υποψήφιο ώριµο µόριο, ϐασισ-

µένοι στην διάταξη των αποτελεσµάτων που παρέχει το µοντέλο µας. Για



κάθε µια στρατηγική, η ϐεβαιότητα ότι η υπολογιστική αλήθεια ϐρίσκε-

ται ±6nt µακριά από το πραγµατικό ώριµο miRNA είναι : α) 86.88% για

το υποψήφιο µε την υψηλότερη επίδοση (top scorer), ϐ) 88.25% για το

υποψήφιο που σχηµατίζεται από το µεσαίο στοιχείο του διαστήµατος που

ορίζουν οι τέσσερις υποψήφιοι µε την υψηλότερη επίδοση, ς) 89.34% για

το υποψήφιο που σχηµατίζεται από τη µεσή τιµή του διαστήµατος που

ορίζουν οι τέσσερις υποψήφιοι µε την υψηλότερη επίδοση, δ) 87.83% για

τον υποψήφιο µε την υψηλότερη επίδοση (top scorer), και την απένταντι

αλληλουχία του όπως ορίζεται από την δευτεροταγή δοµή του πρώιµο

µορίου (duplex). Τα αποτελέσµατά µας προτείνουν ότι η πληφορορίες

ακολουθιάς και δευτεροταγής δοµής που παρέχονται σε επίπεδο ϑέσεων,

καθώς και οι χαρακτηριστικές αποστάσεις των ορίων του ώριµου µορίου

miRNA σε συνδυασµό µε έναν Naive Bayes classifier επιτυγχάνουν πολύ

καλή απόδοση στο δύσκολο πρόβληµα της αναγνώρισης των ώριµων µορίων

miRNA.
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Chapter 1

Introduction

MicroRNAs (miRNAs) are an abundant class of ∼ 22nt long endogenous non–

protein–coding RNAs that regulate gene expression by binding to target sites on

3’UTRs of messenger RNAs (mRNAs). This binding results primarily in transla­

tional repression or mRNA degradation [54], although an enhancement of the target

gene’s expression has also been observed [65]. Mature miRNAs are derived from

longer (70–100nt) precursors, the pre–miRNAs, which form a hairpin–like structure

that contains one or two mature miRNAs in either or both of its arms. A large

body of experimental findings indicates that the regulatory action of miRNAs is es­

sential for most organisms as these tiny molecules play a central role in multiple

processes, including development timing [41, 56], cell proliferation and differenti­

ation [26, 66, 58, 16, 10], apoptosis [69, 7, 22], as well as in numerous diseases

[28, 46, 38, 51, 27] and anti–viral defense [49, 24] (for more detailed description see

also section 2.3).

An important step towards the understanding of miRNA–mediated regulation

would be to assemble a complete catalog of miRNA genes, their products and their

targets. Torwards this goal, experimental cloning efforts have successfully identified

highly expressed miRNAs from various tissues and various organisms. However,

cloning methods have a number of shortcomings, including high costs, while they

are are highly biased towards miRNAs that are abundantly and/or ubiquitously ex­

pressed. On the other hand, computational prediction of miRNAs could become a

powerful tool for finding tissue–specific or lowly expressed miRNAs. Several compu­

tational methods have been developed to facilitate the discovery of miRNAs (reviewed

in [5]). Most of them focus on the discovery of either novel miRNA genes in the

genomes of various species or possible mRNA targets of the known miRNAs. On the

contrary, few attempts have been made to computationally predict the functional

1



2 Chapter 1. Introduction

part of the miRNA precursor, namely the mature miRNA. A number of studies ([50],

[72], [61]) combine miRNA gene prediction with the identification of a possible start

position for the mature. To our knowledge, only one study [64] focuses exclusively

on mature miRNA prediction, utilizing thermodynamic and structural information.

1.1 Objectives

The purpose of this thesis is to build a Naive Bayes classifier capable of indentifying

the mature miRNA(s) within a precursor miRNA with high accuracy. Torwards this

goal, we consider biological features of miRNA precursors such as position specific

sequence and structure information. We investigate numerous combinations of

such features both within the mature as well as in regions around it. Features

are selected according to their effect on classification performance in a two–class

problem(true vs false mature), whereby all possible mature candidates that can

be generated by sliding along the precursor are tested. The model’s output is the

predicted start position of the mature miRNA(s) for each precursor sequence.

1.2 Thesis Organization

This thesis is organized as follows: chapter 2 presents the biological properties of

miRNAs, such as their biogenesis and functionality, and reviews other computa­

tional methods that have been developed to identify mature miRNAs. In chapter

3, we describe the methodology used to develop our Bayesian classifier, while in

chapter 4 we analyze the training and evaluation of our model and contrast our

findings with oter methods. Finally, in chapter 5 we conclude and propose some

future work.



Chapter 2

Background Theory

MicroRNAs (miRNAs) are small 19–25 nucleotides long, single–stranded RNAs that

are generated from endogenous hairpin shaped transcripts [35]. MicroRNAs func­

tion as regulatory molecules in post–transcriptional gene silencing by base pairing

with target mRNAs, which leads to mRNA cleavage or translational repression, de­

pending on the degree of complementarity between miRNA and its target transcript.

The first known miRNA, lin–4, was discovered in 1993 by Victor Ambros and

his colleagues while studing the heterochronic gene lin–14 in C. elegans [41]. Since

the discovery of the first miRNA in 1993, thousands of miRNA genes have been

identified from a wide range of eukaryotic organisms such as plants, mammals, fish,

birds, worms and flies. Although it has been difficult to assign a specific function

to miRNAs, important roles are emerging including the control of developmental

timing, tumor suppression, cell differentiation and apoptosis.

In this chapter, we review the existing literature regarding the biogenesis (sec­

tion 2.1), their mechanisms of action (section 2.2) and some of the known functions

of miRNAs (section 2.3), as well as computational methods that focus on mature

miRNA prediction (section 2.4).

2.1 Biogenesis

Although miRNAs are functionally similar to short interfering RNAs (siRNAs), they

are unique in terms of their biogenesis. MicroRNA genes are transcribed into the

pri–miRNAs, long double–stranded unstructured precursors, which sometimes can

be several thousands bases long, with a 5’ cap structure and a 3’ Poly(A) tail [43].

It remains unclear which RNA polymerase is responsible for the transcription, al­

though several observations have suggested that RNA polymerase II may be the key

3



4 Chapter 2. Background Theory

polymerase engaged in miRNA gene transcription [8, 43]. The most important of

these findings are:

• The pri–miRNAs are transcribed as long molecules, which sometimes can be

several thousands bases long, with a 5’ cap structure and a 3’ Poly(A) tail,

which are unique properties of polymerase II gene transcripts [43].

• Stretches with more than four U’s, which terminate the transcription of poly­

merase III, widely exist in pri–miRNAs sequences [57].

The primary transcript (pri–miRNA) is enzymatically processed in the nucleus

by the Microprocessor complex into the precursor miRNA (pre–miRNA), a stem–

loop of about 60–100 nt with a 2–nt 3’ overhang. The Microprocessor complex in

mammals consists of a specific ribonuclease of RNase III endonuclease family called

Drosha which acts together with the cofactor called DGCR8 or Pasha. The latter

is a double–stranded RNA binding protein that dimerizes with Drosha [39]. It is

not very clear how the Microprocessor complex recognizes primary RNA substrates

and selects its cleavage sites, since pri–miRNAs in animals don’t seen to share any

common sequence motifs. The cleavage site identification might result from the 3D

structure of pre–miRNA. It was shown that in humans Drosha selectively cleaves

RNA hairpin with a large terminal loop, greater than or equal to 10nt. It uses the

distance information to decide where to cut: from the junction of the loop and the

adjacent stem, Drosha cleaves approximately two helical RNA turns into the stem

to produce the pre–miRNA [74].

Following the nuclear processing by Microprocessor in mammals, pre–miRNAs

are transported to the cytoplasm by Exportin–5, a nucleus export factor, in a Ran–

GTP dependent manner [33, 71]. Exportin–5 was originally known as a minor export

factor for tRNAs, because it can transport tRNAs when the primary export factor,

Exportin–t, is depleted or overloaded [23]. The binding of Exportin–5 to pre–miRNA

is specific because a stem must be larger that 14 base pairs with a base­paired 5’

end and a short 3’ overhang in order for exportin–5 to bind efficiently [73].

Being exported from the nucleus, pre–miRNAs are subsequently processed into

approximately 22 nucleotide miRNA duplexes by the cytoplasmic RNase III Dicer [6].

Dicer is a highly conserved protein that is found in almost all eukaryotic organisms.

Some organisms contain multiple Dicer homologues, in which different Dicer iso­

types are often assigned to take on distinct roles. For example, in D.megalogaster,

Dicer–1 is required for pre–miRNA cleavages, whereas Dicer–2 is needed for siRNA

generation [42].
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(a) Biogenesis in mammals. (b) Biogenesis in plants.

Figure 2.1: Model for microRNA biogenesis. Biogenesis of the mature miRNA

is the result of a series of cleavage processes that begins with a primary miRNA.

In mammals (a), pri–miRNA is processed in the nucleus into a precursor miRNA

hairpin (60­100nt long) by Drosha; then the precursor is transported by Exportin–5

into the cytoplasm, where it is cleaved into the mature miRNA (∼22nt long) by Dicer.

In plants (b), the pri–miRNA is processed in the nucleus into a precursor miRNA

hairpin (60­100nt long) by Dicer; then the precursor is cleaved into the mature

miRNA (∼22nt long) by Dicer also, and the duplex miRNA–miRNA* is transported

by HASTY, a plant homologue of Exportin–5, into the cytoplasm.

The maturation of miRNAs in plants is very different from that in animals. First Biogenesis in plants

of all, plant miRNA precursors are quite diverse in structure, and their stem–loops

are usually longer than in animals pre­miRNAs. Moreover, no Drosha homologue

has been identified in plants so far. However, four Dicer homologues exist in Ara­

bidosis Thaliana, and two of these Dicer proteins are likely to be localized in the

nucleus. Dicer–like protein–1 (DCL1) possible performs both Drosha and Dicer–like

activities for miRNA maturation [53]. Since DCL1 is a nucleus protein, this indicates

that mature miRNAs might be generated in the nucleus in plants, unlike animals

where the whole precursor is exported to the cytoplasm. While Exportin–5 transfers

pre­miRNAs to the cytoplasm in animals, the Arabidopsis homolog of Exportin–5,

HASTY, is proposed to export the miRNA–miRNA* duplex to the cytoplasm.
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Figure 2.1 shows an overview of the microRNA biogenesis pathway for both

mammals and plants. Overall, the biogenesis of a mature miRNA is the result

of a series of cleavage processes that begin with a primary miRNA. Moreover, the

regulatory mechanisms of miRNA maturation have different complexities between

mammals and plants, despite their similarities.

2.2 MicroRNAs in action

After the pre­miRNA is processed into a miRNA­miRNA* duplex by Dicer, one of the

RNA strands is incorporated into RISC for target recognition. RISC is composed

of Dicer, Argonaute (AGO) and other non–specified proteins. AGO proteins bind to

either miRNAs or siRNAs to create the core of the complex. Different Ago paralogs

exist across species, and variants of the AGO protein within the same specie can

have different functions. It is likely that the different AGO homologues along with

the variable associating factors allow for different subtypes of RISC in order to

provide a specific response to a particular siRNA and miRNA. RISC has many diverse

functions in both siRNA and miRNA mechanisms. It acts as an effector complex in

translational repression and mRNA cleavage [12, 14].

MiRNAs in animals mostly suppress translation of their target mRNAs due toTranslation repression

an imperfect base–pairing within 3’ untranslated regions (UTRs). By binding to the

3’UTR of the mRNA, the miRNA has the ability to inhibit translation by directly

interfering with translation initiation factors or by disrupting poly(A) tail function

(see figure 2.2).

The distinction between translation repression and mRNA cleavage mediatedmRNA cleavage

by miRNAs relies primarily on the degree of complementarity between the miRNA

and its target. In plants, miRNA regulation leads to mRNA cleavage due to the near

perfect complementarity in base–pairing between miRNA and their target mRNA

[44]. In mammals, miRNAs usually don’t have perfect complementarity with their

target thus leading to translational repression. There are a number of exceptions

to the above rules including the mammalian mir–196 which leads to cleavage of

Hoxb8 mRNA instead of the expected translational repression [70] and the plant

miR­172 which acts as a translational repressor [11] . While perfect base–pairing

is thought to be the critical feature of miRNA–mediated mRNA cleavage, it is not

always sufficient in plants, suggesting the need for supplementary catalytic activity

by RISC [11]. Regardless of the species, perfect match between the miRNA and

the target mRNA is required for efficient cleavage, especially considering the precise
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Figure 2.2: MicroRNAs in action. The mature miRNA (indicated by red), which

forms one strand of the miRNA–miRNA* duplex , is incorporated into a large pro­

tein complex, termed RNA induced silencing complex (RISC), where it functions to

guide RISC to target mRNA. Depending on the degree of complementarity between

miRNA and its target transcript, miRNA either leads to translational repression of

the target transcript (not perfect complementarity) or to mRNA cleavage (near perfect

complementarity).

location of the cut between residues 10 and 11 of the miRNA [44] (see figure 2.2).

2.3 MicroRNA Functionality

MicroRNAs have been implicated in biological processes ranging from developmental

timing to apoptosis. As biologists discover the role of microRNAs in even more

processes, the importance of these tiny RNAs molecules will become more clear.

The first biological process for which scientists discovered the effect of microR­ Developmental timing

NAs was the developmental timing in C. elegans, where microRNA lin–4 and let–7

played a role [41, 56]. Lin–4 and let–7 bind to multiple conserveds sites in the 3’UTR

of the lin–14 and lin–41 transcripts, respectively, through direct but imprecise base–

pairing, thus inhibiting translation [41, 63]. In C. elegans, down–regulation of the

LIN–14 protein at the end of the first larval stage initiates the second larval stage

[41]. Lin–41, on the other hand, regulates the developmental transition from the

last larval stage to the adult stage [63]. Lin–4 and let–7 also regulate two other

genes, lin–28 and lin–57, respectively [48, 1]. Lin–28 encodes an RNA–binding pro­
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tein that is important for neuronal differentiation of embryonic carcinoma cells [68],

while lin–57 encodes a protein responsible for the terminal differentiation of hypo­

dermis in C. elegans [1]. Since the original C. elegans experiments, the regulatory

abilities of lin–4 and let–7 have been extended to flies and mammals [59]. In mice,

these miRNAs inhibit expression of lin–41, which is involved in key developmental

events such as limb formation [59]. Studies of three miRNAs in Drosophila, let–7,

miR–125(the lin–4 homolog) and miR–100, not only show their up regulation during

major points of development but also demonstrate the requirement for concurrent

expression of a hormone in order to be functionally expressed [60]. Important mRNA

targets responsible for developmental timing have also been found in Arabidopsis

thaliana, suggesting that miRNA regulation in morphogenesis is a primitive mech­

anism [17, 3].

Apart from guiding developmental timing, miRNAs have also been establishedCell proliferation and

differentiation
as potent controllers of cell proliferation and differentiation. Although the division

of cells is imperative for the growth of an organism, it can also be detrimental when

occurring at inappropriate times. The latter is the hallmark of cancer, and several

miRNAs have been shown to be up regulated in tumors (see paragraph 2.3 – Dis­

ease). Mutation studies in Drosophila show that disruption of miRNA processing

causes stem cells to be locked between the G1 and S phases, thus halting division

[26]. A neuron­specific miRNA, miR–132, is a target of the transcription factor,

cAMP–response element binding protein. It regulates neuronal growth by decreas­

ing the levels of a GTPase–activating protein [66]. Another brain–specific miRNA,

miR–134, is expressed in the synapto–dendritic compartment of rat hippocampal

neurons, where it is capable of down–regulating Limk–1, a protein responsible for

spine development [58]. Regulatory roles of miRNAs are not limited to the brain.

Adipose cell differentiation has been shown to be partially controlled by the expres­

sion of miR–143 [16]. Also, miR–1 and miR–133 are important regulators of skeletal

muscle proliferation and differentiation [10]. Since cell growth and differentiation

are highly dynamic processes, it is no wonder that miRNA with the specific and

fast–acting regulatory abilities play a vital role in shaping these processes.

Apoptosis or programmed cell death, is an integral part of animal tissue devel­Apoptosis

opment. Apoptosis is an evolutionarily conserved process that allows animals to

remove cells that are useless or that are detrimental for survival. Once apoptosis

is activated, caspase proteins cleave both the structural and functional elements of

the cell. Therefore, cell death and survival depend largely on the control of active

caspases in the cell. Because caspases are ubiquitous, it makes sense that miRNAs



2.3. MicroRNA Functionality 9

would play a role in their regulation. Indeed, in the Drosophila eye, the absence of

miR–14 leads to an increase in the cell death effector, Drice, suggesting that miR–14

is an inhibitor of apoptosis [69]. Likewise, the bantam gene encodes an miRNA that

when over–expressed, it suppresses apoptosis in the Drosophila retina. One of the

identified targets for bantam is the pro–apoptotic gene, hid, whose mRNA contains

sequences that ase complementary to bantam [7]. It has been known for quite

some time that viruses must prevent apoptosis in order to survive in the host cell.

Recently, it has been discovered that the herpes simplex virus­1 inhibits apopto­

sis through a latency–associated miRNA (miR­LAT ) that modulates TGF–β signaling

[22]. By using miRNAs instead of proteins in the inhibition of apoptosis, viruses are

able to survive as well as evade immune detection. As functional studies of miRNA

continues, the list of targets involved in apoptosis will likely grow radically.

Although miRNAs have been established as being vital for animal development, Disease

they are also associated with diseases when their repressing activities are compro­

mised. Some of miRNAs, including miR–143 and miR–145, have been suggested

to act as tumor suppressors. Thus, their down–regulation leads to tumorigenesis

[28, 46]. The exact targets for these miRNAs have not been elucidated, but they are

likely to be genes that regulate cell cycle. Another study found that miR–15 and

miR–16 directly suppresses the BCL2 oncogene [13]. Furthermore, the previously

discussed miRNA, let–7, has been linked to RAS, a potent activator of cell transfor­

mation [31]. Several different miRNA clusters have also been associated with the

MYC oncogene [38, 51, 27]. Although the majority of miRNAs are down–regulated

in cancers, some including miR–21 are up–regulated due to their anti–apoptotic

effects [9]. Whether miR–21 has a direct role in cancer progression or is simply

differentially modulated in tumors still needs to be clarified.

Due to their involvement in cancer, miRNAs may serve as important targets

for therapeutic intervention. Indeed, experiments are already underway in model

systems to inactivate miRNAs that may serve as oncogenes [29, 36, 19]. However,

the new era of therapeutic targeting of miRNAs is not limited to cancer. A recent

study of miR­375, a pancreatic­specific miRNA that regulates insulin secretion,

suggests that miRNA therapies may also be applicable to diabetes [55]. As more

miRNAs are linked to diseases, it is possible that this approach can be applied to

virtually any organ system in the body.

While microRNAs are implicated in diseases caused by malfunctions in the cel­ Anti­viral defense

lular machinery, they also play an important role in preventing diseases caused by

viruses. Scientists studying plants first proposed that miRNAs may be able to in­
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duce post transcriptional gene silencing of viral mRNAs [49, 24]. In plants, miRNAs

have anti–viral capabilitiesy with short–lived effects because evolving viral factors

eventually inactivate them [62]. In fact, many viruses have the ability to evade

silencing by the host, but some viruses are better adapted for evading cellular ma­

chinery than others. In humans, for example, the adenovirus can block host miRNA

biogenesis, thus squelching the very anti–viral miRNAs that are meant to stop ade­

novirus replication [45]. Also, tissue culture experiments show that the primate

foamy virus type I (PFV­1) can escape silencing by miR–32 with a silencing suppres­

sor protein called Tas [40]. These observations suggest that host miRNA–mediated

defence cannot always overcome viral attacks. However, these experiments do not

account for the possibility of defence responses mounted by multiple miRNAs work­

ing together. A study of the hepatitis C virus demonstrates that the introduction of

multiple siRNAs targeted to different areas of the viral genome prevents the virus

from escaping siRNA–silencing [67].

2.4 Related Work

One of the prominent characteristics of miRNAs is that their expression is spatially

and temporally regulated. Many miRNAs are highly expressed in certain organs

or cell types and some are only expressed in certain stages during development.

Considering this tight regulation and their small size, it is no wonder why miRNAs

were not identified earlier, despite their wide spread occurrences in different species.

From the very beginning, computational approaches have been extensively used in

the research for novel miRNAs. Most computational methods focus either on the

discovery of new miRNA genes in the genome of various species or the prediction

of mRNA targets for the known miRNAs. On the contrary, few attempts have been

made to computationally predict the functional part of the miRNA precursor, namely

the mature miRNA. A number of studies ([50], [72], [61]) combine miRNA gene

prediction with the identification of a possible start position for the mature. To our

knowledge, only one study [64] focuses exclusively on mature miRNA prediction.

Nam et al. [50] proposed a probabilistic co–learning method based on paired hid­ProMiR – 2005

den Markov Model (HMM), called ProMiR, to implement a general miRNA prediction

method capable of to identifying close homologs as well as distant homologs. The

method combines both sequential and structural characteristics of miRNA genes in

a probabilistic framework, and simultaneously decides whether a miRNA gene and

a region of mature miRNA are present by detecting the signals for the site cleaved by
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Drosha. The accuracy of mature miRNA region prediction through was evaluated

through 5–fold cross–validation with 136 known miRNAs. The measures used for

assessment were the means of absolute distances and the square root of the mean

of the squares. They also evaluated the predicton of the orientation of the mature

region, with a mean accuracy of 72%.

Yousef et al. [72] presented BayesmiRNAfind, a Naive Bayes classifier that BayesMiRNAfind – 2006

predicts miRNAs based on their secondary structure and sequence. The major

novelty of their work is the combination of data from multiple species, in order

to create a more stable learning process. As far as the mature miRNA prediction

is concerned they assume that only one mature miRNA is associated with each

precursor and they are using the mature prediction for extracting the features of the

classifier. Furthermore, they do not provide any evaluation performance associated

with the mature prediction task.

Sheng et al. [61] proposed a computational method, called mirCoS, that uses mirCoS – 2007

three support vector machines (SVM) models sequentially to discover new miRNA

candidates in mammalian genomes based on sequence, secondary structure and

conservation. The first SVM uses features from sequence conservation of miRNA

precursors, the second SVM uses features from the secondary structure of miRNA

precursors and its conservation, while the last one focuses on mature miRNA pre­

diction. For the third SVM the most discriminatory features measured the amount

and conservation of base–pairing within the part of the predicted secondary struc­

ture corresponding to the miRNA. This is readily explained by the fact that mature

miRNAs are always on the stems of hairpin structures, and the part of a stem that

corresponds to a miRNA tends to have a high level of base pairing. They also es­

timated the method’s performance using a repeated holdout scheme and obtained

an average sensitivity of 85%.

Tao [64] proposed a method that focuses exclusively on mature miRNA pre­ Tao – 2007

diction, utilizing thermodynamic and structural information of the precursor RNA.

A simple K–NN model is employed for learning and predicting the mature miRNA,

using features such as the distance of the mature from the ssRNA tail and loop and

the length of the stem, where mean and standard deviation were calculated for each

category. The method predicted as mature miRNA the candidate with the small­

est score, using a window of 21 base pairs sliding along the precursor’s sequence.

Using 885 mature miRNA on 866 miRNA precursors as training samples, the algo­

rithm predicted 79.4% of the 2780 test samples on 2722 miRNA precursors in 44

species. For human miRNAs, the prediction rate was 84.7% on 346 test mature
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miRNA genes with the rest 127 mature miRNAs serving as training samples.

Let’s briefly point out some disadvantages of the current methods used to pre­

dict the mature miRNA within a hairpin stem–loop. Most of the above methods

hypothesize, direct or indirect, that the hairpin stem­loops contain one only mature

miRNA ([50], [72]), a hypothesis that it is not true for a remarkable number of exper­

imentally verified precursors. Moreover, they cannot exactly determine the mature

miRNA regions [50] or they are not providing any information of their accuracy for

predicting the exact starting position ([72], [61], [64]), an useful information for

experimental biologists. Finally, most of these computational tools estimate their

performance accuracy in terms of true positive rate alone (sensitivity), ignoring the

false positive rate ([50], [61], [64]). It is a matter of semantics as well as a great chal­

lenge to define a true negative example when it comes to mature miRNAs. However,

a major issue in such a classification task is not only to maximize the identification

of true positives but also to minimize the false positive rate. The above bibliography

review of methods used to predict the mature miRNA within a hairpin stem–loop

makes it clear that there is room for improvement.
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Methodology

In this chapter, we describe in detail the methodology and datasets used in order

to build a Naive Bayes classifier capabel of identifying mature miRNAs within a

precursor sequence. Firstly, we briefly review the theory of the naive bayes classifier

(section 3.1) and then we describe the parameters and hypotheses (section 3.2), the

dataset (section 3.3) and the features (section 3.4 and 3.5) used for training our

model.

3.1 The Naive Bayes Classifier

3.1.1 A first approach

The Naive Bayes classifier (NBC) is among the most popular classifiers used in the

machine learning community and has a wide range of applications. Naive Bayes is

a simple probabilistic classifier which is based on the application of the Bayesian

theorem (equation (3.1)) and approximates a joint distribution with the product of

the individual distributions. In simple terms, a NBC assumes that the presence (or

absence) of a particular feature of a class is unrelated to the presence (or absence)

of any other feature. For example, a fruit may be considered to be an apple if it is

red, round, and about 8 cm in diameter. Even though these features may depend

on the existence of the other features, a NBC considers all of them to independently

contribute to the probability that this fruit is an apple.

In spite of their naive design and over­simplified assumptions, naive Bayes clas­

sifiers often work much better in many complex real–world situations than one

might expect. Recently, careful analysis of the Bayesian classification problem has

shown that there are some theoretical reasons for the unexpected efficacy of naive

Bayes classifiers [75]. An advantage of the NBC is that it requires a relatively

13
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Advantages of

Naive Bayessmall amount of training data to estimate the parameters (means and variances

of the variables for each class) necessary for classification, since independence of

variables is assumed. This is very helpful for overcoming the curse of dimension­

ality, which requires scaling the data sets exponentially as the number of features

increases. Another important advantage is the fact that NBC provides a direct intu­

ition about the importance of the features used, especially in comparison to methods

such as artificial neural networks or support vector machines, which work more like

black boxes,that map features into a different, more complex space. Due to these

advantages, NBC is very commonly used as the first approach in many classification

problems.

3.1.2 The mathematical model

According to the Bayesian classifier, a new sample x, which is described by the fea­

ture vector x = 〈x1, x2, . . . , xn〉 and whose class label is unknown, will be assigned

to the class ωj among a finite set of possible classes C = {ω1, . . . , ωc}, that mini­

mizes the overall risk based on its features x, according to the following formula:

α(x) = argminαi∈A

c
∑

j=1

λ(αi|ωj)P (ωj |x)

where:

• A = {α1, . . . , αc} is a finite set of actions, where αi means selecting class ωi,

• λ(αi|ωj) is the loss incurring for deciding ωi, when the true state of nature is

ωj and

• P (ωj |x) is the posterior probability of ωj being the true state of nature given

x.

P (ωj|x) is the posterior probability of class membership, meaning the probability

that x belongs to ωj and can be computed using the Bayes’ formula (see section 2.9

of [15]):

P (ωj|x) =
P (x|ωj)P (ωj)

P (x)
, (3.1)

where P (x|ωj) is the state–conditional probability for x conditioned on ωj being the

true class, P (ωj) is the prior probability or apriori probability that nature is in state

ωj and P (x) =
∑c

j=1
P (x|ωj)P (ωj) the evidence for x.



3.2. Our model 15

The Naive Bayes classifier is based on the simplifying assumption that the input

features among samples of any given class are conditionally independent given the

class [47]. In other words, given the class of a sample, the probability of observing

the conjunction x1, x2, . . . , xn is just the product of the probabilities for the individ­

ual features of this sample:

P (x|cj) = P (x1, x2, . . . , xn|cj) =

n
∏

i

P (xi|cj).

Although the assumption that the predictor variables are independent is not

always accurate, it does simplify the classification task dramatically, since it allows

the class conditional densities p(xk|ωj) to be calculated separately for each variable

k for each class ωj, meaning it reduces a multidimensional task to a number of

one–dimensional tasks. In effect, Naive Bayes reduces a high–dimensional density

estimation task to an one–dimensional kernel density estimation.

3.2 Our model

In this thesis, we describe a method that uses a NBC for the identification of the

mature miRNA(s) within a miRNA precursor. More specific, the observations for

classification (i.e. the samples) are mature miRNA candidates that are produced

from a miRNA precursor sequence by sliding a window of a specified size along

the precursor. Each mature miRNA candidate is described by a set of features

x = 〈x1, x2, . . . , xn〉, that we consider to be independent, and it can be classified as

a mature miRNA (positive class – denoted ω1), or as non­mature miRNA (negative

class – denoted ω−1).

Ideally, we want to classify each sample to the class that minimizes the classi­

fication error, based on our training model. The simplest case is to consider that

all misclassification errors have the same cost, using the zero–one loss function.

Under these assumptions, the Bayes Decision Rule is converted to the following

equation:

Decide ω1 if P (ω1|x) > λ · P (ω−1|x);

otherwise decide ω−1

for some threshold λ ∈ R (see section 2.3 of [15]). Since P (x) is only a normal­

ization factor, it can be omitted in order to minimize calculation time, leaving the

classification unchanged. Moreover, we assume that the prior probability is 50%
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for both classes, which prevents us from favoring a particular class. Under these

assumptions, the Bayes Decision Rule is given by the following simplified formula:

Decide ω1 if P (x|ω1) > λ · P (x|ω−1);

otherwise decide ω−1

for some threshold λ ∈ R.

3.3 Datasets

In section 3.2 we mentioned that each mature candidate can be classified as a

mature miRNA (positive class), or as non­mature miRNA (negative class). This

assumption formulates the mature identification problem into a two–class problem.

As for any typical two–class classification problem, data samples from both classes

are needed in order to train the classifier.

The positive class is the main class of interest, i.e. the mature miRNAs. For thePositive dataset for

training
training procedure, we use as positive data the precursors of experimentally verified

human and mouse microRNA downloaded from the miRBase Sequence Database

(version 10.1, [32], [20], [21]). The human dataset consists of 533 precursors which

produce 729 mature miRNAs, while the mouse dataset consists of 422 precursors

which produce 530 mature miRNAs. We consider precursor and not just mature

miRNA information, since some mature miRNAs come from more than one pre­

cursors [2]. Moreover, precursor information can provide more training examples

depending on type of features used (see section 3.4).

The definition of the mature miRNA is straight forward, but what is a non–Negative dataset for

training
mature miRNA? In order to answer this question and to create the negative class

we consider two hypothesis:

1. As we already mentioned in section 3.2 the search area of the classifier will

be a miRNA precursor sequence.

2. It has been observed that until now miRNA precursors do not produce multiple

overlapping mature miRNAs from the same arm of the foldback precursor [2].

A hypothesis that holds in our positive dataset.

Based on the above constrains, we generate a set of negative examples from the

precursor sequences in the following way: for each true mature miRNA, we use a

same–size sliding window and select all possible ‘‘negative’’ matures which can be

created by sliding 1 base pair towards either direction from the mature, excluding
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any hairpin loops and the true mature. This procedure results in a very large neg­

ative set, where each true mature has a variable number of respective ‘‘negatives’’,

depending on the length and number of precursors it comes from. In order to min­

imize computational time during the training procedure and at the same time have

a good representation of the precursor for the areas where true mature miRNAs do

not lay, we randomly select a subset of 10 negative examples for each true mature.

Apart from the data used to train the classifier, we consider a final, blind dataset The evaluation dataset

to evaluate the performance of our classifier. The dataset contains all new miRNA

precursors of human and mouse, that were published under version 11 and 12

of the miRBase Sequence Database ([32], [20], [21]). The dataset consists of 155

human precursors, which produce 160 mature miRNAs, and 45 mouse precursors,

which produce 48 mature miRNAs.

3.4 Features

The goal of this work is to produce a model that recognizes the mature miRNA(s)

within each precursor sequence, as Dicer does in the real cell. Until now, the only

information we share with Dicer is the sequence and the secondary structure of a

miRNA precursor. MicroRNA precursors have a unique secondary structure forming

irregular hairpin structures with various internal symmetric and non–symmetric

loops, bulges and hairpins. Figure 3.1 presents a typical example of the secondary

structure of a precursor miRNA. More specifically, it is the secondary structure of

the human precursor has–let–7a–1, as it was produced by the RNAfold program [52].

One would expect that the areas on the edges of the mature miRNA would have Position oriented features

a common pattern that is recognized by Dicer. In order to evaluate whether this

hypothesis holds, we consider the information of the sequence and the secondary

structure of a precursor and we represent a mature miRNA as a sequence of po­

sitions. Each position is a single feature and contains sequence information (A,

C, U, G) and/or structural information (match or mismatch), derived from each

respective precursor(s). Notice that we simplify the secondary structure informa­

tion that is provided by a typical secondary structure program, such as RNAfold,

from hairpin, loops and bulges into match or mismatch, in order to represent the

secondary structure into the position level without any loss of information. For

example, figure 3.2 shows a feature found in position 2 1 of the mature miRNA

(indicated with red), which contains the information about its sequence (A) and its

1Position counting starts with zero.
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Bulge

Hairpin

Non symmetric
     Loop 

Symmetric 
  Loop

Figure 3.1: The secondary structure of a miRNA precursor. A typical example

of the secondary structure of a precursor miRNA (the human precursor hsa–let–

7a–1, as it was produced by the RNAfold program [52]), contains hairpins, bulges,

symmetric and non–symmetric loops.

secondary structure (match).

The features that characterize the mature miRNA may lie in positions within the

mature miRNA, but may also lie within a flanking region of variable size that extends

symmetrically (or not) along both sides of the mature sample. It is possible that a

feature that lies outside the mature sample, could also lie outside the precursor,

depending on where the starting or ending position the mature miRNA lie within

the precursor. In this case, the feature gets a special value indicating the lack of

information. Figure 3.3 shows the areas where the position oriented features lie

as a precursor miRNA folds in its secondary structure. With red color is indicated

the mature miRNA, while green circles indicate the two flanking regions of specified

length (i.e. 5nt) around the mature. Notice that the number of position oriented

features depends on the length of the mature miRNA and the size of the flanking

regions. More specifically there are 2 ∗N + mature length position oriented features

that describe a mature miRNA, where N is the size of the flanking region.

Figure 3.4 shows the distributions of two position oriented features as they are



3.4. Features 19

Figure 3.2: An example of a position oriented feature. The feature lies in position

2 within the mature region, indicated with red, and contains information about its

sequence (A) and about its secondary structure (match).

calculated by the training data (see section 3.3). Both features are found in the

flanking region before the actual mature miRNA, position 8 and 9 respectively, and

have high divergence between their positive and negative data (see section 3.5 and

table A.1).

Apart from the position oriented features, we also consider four additional Distance oriented

features
features: the distances of the starting and ending position of a mature miRNA from

the closest hairpin and the distance of the starting and ending position of a mature

miRNA from the 5’ or 3’ precursor’s end, depending whether the mature lies on

the 5’ or 3’ stem respectively. Figure 3.5 shows the distance oriented features of

a mature miRNA (indicated with red) which is found on the 5’ stem of a miRNA

precursor. In a similar way one can define the distance oriented features for a

mature miRNA which is found on the 3’ stem of a precursor. It should be noticed

that these features have two distict distributions depending on stem the mature

miRNA laye within the precursor sequence.

An example distribution of such a feature can be seen in figure 3.6. The feature

shown is the starting position of a mature miRNA from the closest hairpin as is
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Figure 3.3: The regions of position oriented features. The regions where the

position oriented features lie as the miRNA precursor folds in its secondary structure

are the mature region, indicated with red, and the two flanking regions, indicated

with green, that extends symmetrically around the mature region.

calculated by the training data (see section 3.3). The true mature miRNAs (positive

data) tend to start in positions close to the hairpin, while the non­mature miRNAs

(negative data) tend to form the uniform distribution, because of the way they were

produced (see section 3.3).

3.5 Feature Selection

As we already mentioned in section 3.4 there are two types of features used to de­

scribe a mature miRNA in our system, the position oriented and the distance oriented

features. In order to select a set of features that contain discriminatory informa­

tion between true matures and our negative samples, we rank our features using

the symmetric Kullback–Leibler divergence metric (see below paragraph ‘‘Kullback–

Leibler divergence’’) to measure the difference of the feature distributions for the

positive and negative data.

Specifically, we follow the procedure below:
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A M A L C M C L G M G L U M U L no value
0
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(a) Position 8 before the mature miRNA.

A M A L C M C L G M G L U M U L no value
0

0.1

0.2

0.3

0.4

0.5
Position 9 before mature miRNA

 

 

Positive
Negative

(b) Position 9 before the mature miRNA.

Figure 3.4: Example distributions of two position oriented features. The distri­

butions are calculated based on the training data.

1. For each feature, either distance oriented or position oriented, we estimate the

probability mass functions in both positive and negative data.

2. Using the symmetric K­L divergence, we estimate a score for each feature that

measures how different the probability mass functions are between the two
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(a) (b)

Figure 3.5: The distance oriented features of a mature miRNA (indicated with

red) which is found on the 5’ stem of a precursor miRNA. (a) The distances of the

starting position of a mature miRNA from the 5’ end of the precursor (Distance 1)

and from the closest hairpin (Distance 2). (b) The distances of the ending position of

a mature miRNA from the 5’ end of the precursor (Distance 3) and from the closest

hairpin (Distance 4).

classes.

3. We rank the features according to the K­L provided score. Large distances are

considered more informative.

4. We then train the classifier using the top K features. Each feature is incopo­

rated gradually into the classifier only if it helps increasing the performance

of the classifier based on some evaluation metric. We vary both N, the size of

flanking region, and K, the number of features used, until we find the optimal

classifier.

The features selection method used in our model is a typical variable rankingVariable ranking

advatages
method. Variable ranking method is a filter method, which is a preprocessing step,

independent of the choice of the predictor. Still, under certain independence or

orthogonality assumptions, it may be optimal with respect to a given predictor.

For instance, using Fisher’s criterion to rank variables in a classification problem

where the covariance matrix is diagonal is optimum for Fisher’s linear discriminant

classifier [15]. Even when variable ranking is not optimal, it may be preferable to

other variable subset selection methods because of its computational and statistical
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Figure 3.6: An example distribution of a distance oriented feature. The feature

is the starting position of a mature miRNA from the closest hairpin as is calculated

by the training data.

scalability: Computationally, it is efficient since it requires only the computation of

n scores and sorting the scores; Statistically, it is robust against overfitting because

it introduces bias but it may have considerably less variance [25].
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Finally, the Kullback–Leibler divergence metric (K–L divergence) is a measureKullback–Leibler

divergence
of the difference between two probability distributions [37]. For Probability Mass

Functions (PMFs) P and Q of a discrete random variable, the K–L divergence of Q

from P is defined as:

DKL(P |Q) =
∑

i

P (i) log2

P (i)

Q(i)

Two fundamental properties of DKL(P |Q) are:

• non­negativity: DKL(P |Q) ≥ 0 with equality if and only if P = Q.

• asymmetry: DKL(P |Q) 6= DKL(Q|P ).

Unfortunately, the property of asymmetry is the reason why K–L divergence is not

a true distance metric. To overcome this problem we used the symmetric and

nonnegative Kullback–Leibler divergence [30], which is defined as:

1

2
(DKL(P ||Q) + DKL(Q||P ))

and is commonly used in classification problems.



Chapter 4

Results

In this chapter, we discuss the construction and fine tuning procedures for the Naive

Bayes Classifier that was described in detail in chapter 3 (see sections 4.1, 4.2 and

4.3) and compare its performance with that of two existing tools the BayesMiRNAfind

[72] and ProMiR [50] (see section 4.4).

4.1 Training the Naive Bayes Classifier

According to the hypotheses reported in section 3.2, there are a number of param­

eters that need to be tuned, in order to get the optimum Naive Bayes classifier. The

main parameters are the size of the flanking regions, N, the number of features, K,

used in the classifier and the type of information for the position oriented features.

A typical method for tuning the model’s parameters is the m–fold cross–validation

procedure [34], where the data are split into m subsets and a portion of them

(

j
m

)

are used for training, while the remaining

(

m−j
m

)

data are used for validation. This

is repeated iteratively until all data are used for both training and validation. In this

case, we use a 10–fold cross validation procedure and in order to ensure a realistic

estimation of the classifier’s performance, the validation sets consist of true miRNA

precursors, instead of the mature miRNAs alone. It should be noted that the miRNA

precursors used in the validation set correspond to the mature miRNAs that were

left out from the training sets during cross–validation. Classification performance

on the validation set is estimated using a sliding window of fixed size, whereby all

possible mature candidates generated by sliding 1 base pair in both stem arms of

the precursor apart from the hairpin loop(s), are assigned to one of the two classes.

It is important to note that classification performance is estimated based on exact

match of the starting position of the predicted compared to the real mature miRNA.

25
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Even 1nt deviations are considered as negative examples. Based on the above con­

vention, another parameter is introduced into the model, namely the size of the

sliding window, W.

4.1.1 Position oriented features selection

Our first goal is to identify what type of position oriented features are more useful for

the classification task at hand. In section 3.4, three categories of position oriented

features were presented, depending on the type of information they contain:

1. Sequence Type, containing only sequence information (A, C, U, G).

2. Structure Type, containing only information of the secondary structure (match

or mismatch).

3. Combined Type, containing information of both sequence and secondary struc­

ture.

The discriminatory power of each feature category is estimated via assessing the

classification performance of Naive Bayes classifiers over 10–fold cross validation

procedure. As mentioned above, for each Naive Bayes classifier three parameters

need to be tuned: a) the size of the flanking region, N , which is assumed to lie

within N ∈ {0, 5, 7, 10, 12}, b) the size of the scanning window, W , which is ssumed

to be W = 22nt and c) the number of position oriented features used into the clas­

sifier, K, which is assumed to lie within K ∈ {1, 2, . . . , N + W}, since they can be

located either within the mature miRNA, or inside the flanking regions around it.

Moreover, the classification performance is based on Matthew’s correlation coeffi­

cient [4], a measure of the quality of binary classifications. It is generally regarded

as a balanced measure which can be used even if the classes are unbalanced. It

returns a value between −1 and +1, where +1 represents a perfect prediction, 0 an

average random prediction and −1 an inverse prediction.

Tables 4.1, 4.2 and 4.3 show the top scoring classifiers, based on Matthews

Correlation Coefficient (MCC) calculated for threshold λ = 1 (see section 3.2), for

the three categories of input features, each utilizing location­specific information

about the sequence, the structure and both the sequence and structure of the

training examples respectively. Each table shows the sensitivity, specificity and

Matthews Correlation Coefficient (MCC) [4] achieved with different numbers of such

features (position oriented) and with different sizes of flanking regions around the
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Table 4.1: The Sequence–Based Naive Bayes Classifiers trained with emphposition

oriented features containing only sequence information.

Classifier’s Description Sensitivity Specificity MCC

Combination of 12 Features,

0nt flanking region
67.10% 55.10% 0.0850

Combination of 16 Features,

5nt flanking region
76.04% 53.34% 0.1074

Combination of 31 Features,

7nt flanking region
75.96% 53.20% 0.1071

Combination of 19 Features,

10nt flanking region
79.15% 47.01% 0.0960

Combination of 35 Features,

12nt flanking region
74.30% 51.33% 0.0945

Table 4.2: The Structure–Based Naive Bayes Classifiers trained with position ori­

ented features containing only structure information.

Classifier’s Description Sensitivity Specificity MCC

Combination of 10 Features,

0nt flanking region
65.70% 54.30% 0.0730

Combination of 26 Features,

5nt flanking region
76.34% 52.64% 0.1056

Combination of 23 Features,

7nt flanking region
77.85% 54.29% 0.1186

Combination of 39 Features,

10nt flanking region
81.01% 56.63% 0.1373

Combination of 38 Features,

12nt flanking region
79.89% 55.51% 0.1300

mature miRNA. Note that the positions along the precursor which served as input

features were selected based on the K–L divergence metric (see section 3.5).

We found that as the size of the flanking region increased, the sensitivity of the

classifiers tended to improve, while the specificity remained relatively unaffected,

independently of the type of features used. This improvement seemed to reach a

maximum for a flanking region of about 10nt. For classifiers with flanking regions

of 12nt utilizing either sequence or structure information (Tables 4.1 and 4.2 re­

spectively), the extra features did not further improve the accuracy, suggesting that
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Table 4.3: The Combined Naive Bayes Classifiers trained with position oriented

features containing both sequence and structure information.

Classifier’s Description Sensitivity Specificity MCC

Combination of 20 Features,

0nt flanking region
68.50% 62.50% 0.1250

Combination of 29 Features,

5nt flanking region
71.32% 65.34% 0.1394

Combination of 36 Features,

7nt flanking region
74.26% 66.46% 0.1562

Combination of 42 Features,

10nt flanking region
76.50% 65.61% 0.1606

Combination of 39 Features,

12nt flanking region
77.81% 64.14% 0.1590

they probably add more noise than useful information.

Moreover, the classifiers utilizing features with combined information for both

sequence and structure achieved an overall better performance ­in terms of im­

proved specificity and MCC­ than the ones using sequence or structure information

alone. Note that a high specificity score is particularly important in this task, since

the number of negative examples is much larger than the number of positive ones,

suggesting that the position oriented features that utilize both sequence and sec­

ondary structure information have higher discriminatory power that the other two

categories.

4.1.2 Tuning the parameters of the model

As we already mentioned in order to get the optimum Naive Bayes classifier, a

number of parameters need to be tuned. In the previous subsection (4.1.1), we

examined one of the parameters, the discriminatory power of different types of

position oriented features, and showed that features which combined information

of both sequence and secondary structure are more powerful. In this subsection

we examine the rest of the parameters and present the best Naive Bayes classifier,

based on our hypotheses (see section 3.2).

We trained a number of Naive Bayes classifiers using a 10–fold cross valida­Area under the Curve

tion procedure with different parameters values. The classification performance

was assessed using Area Under the Curve (AUC) of the average receiver operating

characteristic (ROC) curve calculated using the threshold averaging algorithm in­
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Figure 4.1: The length distribution of experimentally verified human and mouse

mature miRNA’s from the miRBase Sequence Database (version 10.1, [32], [20],

[21]).

troduced by Fawcett [18]. We use AUC as a classification performance instead of

the MCC, which was used in the previous section (4.1.1), because it is not limited

by a specific λ threshold and is insensitive to both skewed class distributions and

unequal classification error costs. Finally, the AUC of a classifier is equivalent to the

probability that the classifier will rank a randomly chosen positive instance higher

than a randomly chosen negative instance [18], which is more intuitive than the

MCC.

A set of different values for the parameters in question were selected based on Parameters’ Values

the results of the previous set of experiments (subsection 4.1.1). Regarding the

size of the flanking region, we tested values within the N ∈ {0, 3, 5, 7, 9} set, since

position oriented features derived from langer flanking regions didn’t improve the

classification accuracy. Regarding the scanning window, W , values {18, 20, 22, 24},

were investigated. Note that 18 is the size of the smallest mature miRNA in our

training data, and 22 is the average size (see figure 4.1). Regarding the number of

position oriented features used to train the classifier, K, we followed an incremental

approach where K ∈ {1, 2, . . . , N + W}. Features were added as described in 3.5

until no more improvement could be achieved. Four distance oriented features
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Table 4.4: The AUC of the average ROC curve, over the 10–fold cross validation,

of the naive bayes classifiers with distance oriented features for every scanning

window value. In the array below with HS and HE are representing the distances

of the starting and ending position of the mature from the hairpin respectively, and

with ES and EE the distances of starting and ending position of the mature miRNA

from the ends of the precursor respectively.

Distance ori­

ented Features

Window

18nt

Window

20nt

Window

22nt

Window

24nt

HS 0.8181 0.8155 0.8128 0.8147

HS­HE 0.7794 0.7914 0.8099 0.8100

HS­HE­ES 0.7621 0.7803 0.7787 0.7866

HS­HE­ES­EE 0.7587 0.7808 0.7875 0.7839

denoting the distance of the starting and ending position of the mature from the

hairpin and the precursor, respectevely, were also examined.

As we mentioned in section 3.5, we are using a variable ranking method toClassifiation using

distance oriented

features
select the order of introducing our features into the classifier. The features with the

highest Kullback–Leibler divergence, the metric for ranking the features, were the

distance oriented features (see table A.1). Tables 4.4 shows the performance of the

Naive Bayes classifiers that were trained using distance oriented features alone for

every value of the scanning window W . We found that the most powerful feature

based on Kullback–Leibler divergence (see table A.1), is the distance of the starting

position of a mature miRNA from the closest hairpin (HS). Using this feature alone

results a classification performance of approximately 0.81 AUC in the 10–fold cross

validation procedure. Adding the rest of the distance oriented features unfortunately

decreased the AUC below 0.80, suggesting that they probably add more noise than

useful information.

Thus, in the next set of experiments we consider the combination of HS with

position oriented features containing both sequence and secondary structure infor­

mation. As shown (see tables A.2, A.3, A.4, A.5 and A.6) adding position oriented

features into the classifier futher improves the classification performance . Position

oriented features were inserted according to the Kullback–Leibler score, as long as

their respective positions lied within the mature or flanking regions of the classifier.

Table 4.5 shows the best Naive Bayes classifiers using HS and position oriented

features for every combination of flanking region and scanning window. For each

classifier the table presents its performance in terms of AUC over the average ROC
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curve and the number of position oriented features used.

The classifier with the highest performance on the cross–validation task was The best Naive Bayes

classifier
the one trained with 37 position orieted features and the distance of the starting

position of the mature miRNA from the hairpin (HS feature). The optimal flanking

region was N = 9nt and the optimal scanning window W = 22nt. The highest

performance achieved was AUC ≈ 0.88 over the 10–fold cross validation, although

the rest of the classifiers in table 4.5 have similar classification performances. To

get a better estimate of the classifier’s performance we tested our model against

a blind dataset (see paragraph ‘‘The evaluation dataset’’ section 3.3). Figure 4.2

shows the ROC curves of the best classifier both in the cross validation (green line)

and the evaluation dataset (black line). For each point in the ROC curve of the

cross validation procedure (green line) we also provide the standard deviation for

both false and true positive rate (red and blue line respectively). The AUC in the

average ROC curve is ∼ 0.88, while in the blind evaluation dataset is ∼ 0.80. Even

though the AUC decreases in the evaluation dataset, it remains sufficiently high.

4.2 Finding the best mature candidate

The purpose of this thesis is to create a model that would predict the mature

miRNA(s) that is(are) produced by a precursor miRNA. The Naive Bayes classifiers

will classify the candidates, that are created by shifting a scanning window of a

specified size 1nt at a time along the precursor stems, into mature or non–mature.

Based on the classification performance even our best classifier (AUC ≈ 0.88 over

the cross validation) will classify a number of candidates as mature for each pre­

cursor depending on a selected score threshold λ.

For example table 4.6 shows the mature candidates of the precursor hsa­mir­

576 using score threshold λ = 1. We select a score threshold λ = 1, which based

on the average ROC curve of the cross validation (see figure 4.2), has an average

Sensitivity of 86.95%±0.0348 and an average Specificity of 73.27%±0.0120. For each

mature candidate, which is represented by its starting position within the precursor

(column ‘‘Position’’), the table shows the Bayesian score (column ‘‘Bayesian score’’)

and the distance from the closest true mature miRNA of the precursor (column

‘‘Distance from Truth’’). The candidates per stem are sorted based on the Bayesian

score and it should be noted that consecutive candidate positions have close ranking

positions. The precursor hsa­mir­576 actually produces two mature miRNAs, one

in position 15 on the 5’ stem and one in position 54 on 3’ the stem, but our best
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Table 4.5: The AUC of the average ROC curve, over the 10–fold cross validation, of the best naive bayes classifiers for every

combination of flanking region and scanning window.

Flanking Region Window 18nt Window 20nt Window 22nt Window 24nt

0nt
17 Position Features 17 Position Features 18 Position Features 18 Position Features

0.8629 0.8615 0.8621 0.8624

3nt
19 Position Features 20 Position Features 23 Position Features 23 Position Features

0.8671 0.8658 0.8675 0.8661

5nt
19 Position Features 20 Position Features 27 Position Features 21 Position Features

0.8597 0.8614 0.8662 0.8642

7nt
5 Position Features 24 Position Features 31 Position Features 25 Position Features

0.8592 0.8630 0.8716 0.8696

9nt
16 Position Features 34 Position Features 37 Position Features 35 Position Features

0.8599 0.8673 0.8771 0.8704
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Figure 4.2: The ROC curve of the Best Naive Bayes Classifier. The green line

represents the average ROC curve over the 10–fold cross validation, with blue the

standard deviation of the true positive rate (TPR) and with red the standard deviation

of the false positive rate (FPR), while the black line represents the ROC curve over

the final blind dataset. The average AUC over the cross validation is 0.8771, while

the AUC of the blind, test dataset is 0.791.

classifier provides 5 mature candidates on 5’ stem and 13 mature candidates on 3’

stem using score threshold λ = 1, respectively.

As we already mentioned it is known that experimentally miRNA precursors do

not produce multiple overlapping mature miRNAs from the same arm of the fold­

back precursor [2], and providing more than one position per stem as candidates

may not be so useful for a biologist. In order to overcome this problem, we next try to

provide one mature candidate per stem by using our best Naive Bayes classifier as a

ranker and combining the highest scoring candidates to produce one computational

candidate/truth. The evaluation of the methods of computational truth will be in

terms of distance from the true mature miRNAs and our goal is to find the candidate

with the smallest possible distance provided with the highest confidence. Note that

distance in this case corresponds to the difference of the start position between the

true mature and the predicted candidates.
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Table 4.6: Mature candidates of precursor hsa­mir­576 from our best naive bayes

classifier with score threshold λ = 1. The candidates are sorted by Bayesian score

per stem and for each of them the table shows its Bayesian score and the distance

from the closest true mature miRNA.

5’Stem – True mature:15 3’Stem – True mature:54

Position
Bayesian Distance

Position
Bayesian Distance

Score from Truth Score from Truth

16 24.61 1 53 145.07 ­1

15 17.68 0 52 96.22 ­2

14 12.01 ­1 54 95.30 0

17 8.24 2 51 46.66 ­3

18 5.68 3 50 25.80 ­4

60 11.91 6

63 11.72 9

65 11.54 11

55 7.54 1

67 5.18 13

66 5.13 12

68 2.30 14

56 1.32 2

4.2.1 Finding the computational truth

The first idea is to provide the top scorer per stem as the computational truth withAverage Candidate

a score threshold λ = 1. Figure 4.3 shows the average distance distribution of

the top scorers from the true mature miRNAs for the stems that produce mature

miRNAs over the 10–fold cross validation. The average mean of the distribution

is 0.2337nt, while the average standard deviation is 6.586nt. It should be noted

that the 86.88% of the computational truth was ±6nt away from truth. We also

examined as computational truth the middle point of the positions’ space defined by

n top scorers and the mean value of n top scorers, where n ∈ {2, . . . , 6} (see tables

A.7 and A.8). The best results for both computational solutions were obtained

for n = 4. Figures 4.4 and 4.5 show the average distance distributions of the

computational truth from the true mature miRNAs, only for the stems that produce

mature miRNAs, over the 10­fold cross validation for n = 4. The computational

truth in figure 4.4 is the middle point of 4 top scorers, while in figure 4.5 is the mean

value of 4 top scorers, using in both cases a score threshold λ = 1. The average

mean of the average distance distribution for the middle point of the 4 top scorers is
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Figure 4.3: The average distance distribution over the 10–fold cross validation (left)

and the percent for each distance away from the truth (right), when the computa­

tional truth is the top scorer using score threshold λ = 1.
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Figure 4.4: The average distance distribution over the 10–fold cross validation (left)

and the percent for each distance away from the truth (right), when the computa­

tional truth is the middle point of the range defined by the 4 top scorers using score

threshold λ = 1.

0.3694nt with average standard deviation 5.5208nt, while the average mean for the

mean value of 4 top scorers is 0.8298nt with average standard deviation 5.4579nt.

Finally, the 88.25% of the middle point computational candidates and the 89.34%

of the mean value computational candidates were within ±6nt distance from truth.

The main problem with this approach is that even for precursors which produce, miRNA duplex

a single mature miRNA, our model will also provide a mature candidate for the
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tional truth is the mean value of the 4 top scorers using score threshold λ = 1.

opposite stem. For example, precursor hsa­mir­140 produces only one mature

miRNA in position 22 on 5’stem, but our model proposes two mature candidates one

in position 23 on 5’stem and one in position 61 on 3’stem, if we use as computational

truth the top scorer per stem. The second candidate appears because approximately

half of our training data produce two mature miRNAs and the model learns to

identify candidates in both stems. The first candidate in this specific example is only

1nt away from truth, while the second one is 39nt away. The second position based

on the known information is a false positive, but it may be biologically significant if

the two candidates correspond to the miRNA­miRNA* duplex (see section 2.1). Our

next goal is thus to provide instead of two mature candidates, one double stranded

candidate which is more likely to correspond to the miRNA–miRNA* duplex. Based

on the observation that the miRNA­miRNA* duplex has approximately 2nt overhang

in the 3’ end, our model will first identify the top scoring mature over both stem and

will then provide its miRNA* as the miRNA from the opposite stem which starts 2nt

away from the matching position of the mature candidate’s ending position.

Figure 4.6 shows the average distance distribution over the cross validation

assuming as truth the top scorer of the precursor and its miRNA*. The distance

is measured from the true mature, irrespectively of whether it corresponds to the

predected miRNA or its miRNA* candidate. If the precursor produces two matures,

both distances are calculated. The distribution of the miRNA–miRNA* duplex of the

top scorer has average mean 0.0505nt and average standard deviation 5.8127nt over
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away from the truth (right) of the top scorer miRNA–miRNA* duplex over the 10–fold

cross validation.

the cross validation. Moreover, the 87.83% of the candidates are ±6nt away from

the truth.

Overall, the best strategies for calculating the computational truth are the top

scorer per stem if we have the prior knowledge which stem produces the mature

miRNA, otherwise the top scorer per precursor and its duplex.

4.2.2 Evaluate best strategies in test dataset

In this subsection we evaluate the performance of the best strategies of finding the

computational truth over a blind test dataset (see section 3.3). As we methioned

above the best strategies for calculating the computational truth are the top scorer

per stem if we have the prior knowledge which stem produces the mature miRNA,

otherwise the top scorer per precursor and its duplex. Figure 4.7 shows the dis­

tance distributions the two best strategies of calculating the computational truth as

mentioned above. The 76.37% of the top scorers candidates per stem were found in

±6nt away from the true mature miRNA, while the 78.74% of the top scorers with

their duplexes as candidates lay within the same distance, over the blind dataset.

Both strategies keep their percent of candidates for the distance of ±6nt in high

levels.

We also evaluate their performance of these strategies by splitting the test

dataset into human and mouse set, in order to evaluate if there is a difference
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Figure 4.7: The distance distributions (left) and the percent per distance away from

the truth (right) of the computational truth of our Best Naive Bayes classifier over

the test dataset, for the most accurate strategies, top scorer per stem (see figure

4.7(a)), and top scorer per precursor and its duplex (see figure 4.7(b)).
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that is drawn from the species. Figure 4.8 shows the distance distributions over

the human and mouse test dataset, when the computational truth is the top scorer

per stem. In both organisms the candidates that lay within ±6nt away from the

true mature miRNA have high percent, the 76.98% for the human dataset (see figure

4.8(a)) and the 74.42% for the mouse dataset (see figure 4.8(b)). Although the two

distributions seems similar, the Kolmogorov­Smirnov Test shaw that the datasets

come from different distributions (p­value ≈ 0.0352). On the other hand, figure 4.9

show the distance distributions over the human and mouse dataset, when the com­

putational truth is the top scorer per precursor and its duplex. In both organisms

the candidates that lay within ±6nt away from the true mature miRNA have high

percent, the 81.13% for the human dataset (see figure 4.9(a)) and the 70.83% for the

mouse dataset (see figure 4.9(b)). The Kolmogorov–Smirnov Test in this cases shaw

that the datasets come from the same distribution (p­value ≈ 0.3310). This evalua­

tion shows that the top scorer per precursor with its duplex is more strong strategy

for finding the optimal mature candidate within a miRNA precursor sequence.

4.3 Problem Complexity

In order to evaluate the generalization of our best classifier we compare with the

simplest classifier we trained, based on the distance distributions of the best two

strategies of computational truth, the top scorer per stem and the top scorer per

precursor with its duplex. Our best classifier uses 37 position oriented features

and the distance of the starting position of the mature miRNA from the hairpin and

achieves AUC ≈ 0.88 over the 10–fold cross validation, while our simplest classifier

uses one single feature, the distance of the starting position of the mature miRNA

from the hairpin, also named as HS classifier, and achieves AUC ≈ 0.81 over the

10–fold cross validation.

Figure 4.10 shows the average distance distributions of the HS classifier if the

compuational truth is the top scorer per stem (see figure 4.10(a)) or the top scorer

per precursor and its duplex (see figure 4.10(b)). If we consider as computational

truth the top scorer per stem then the 47.47% of the computational truth were ±6nt

away from the true mature for HS classifier (see figure 4.10(a)), while 86.88% of the

computational truth were within the same distance for out best classifier (see figure

4.3). We also evaluate the statistical difference between these two distributions us­

ing the Kolmogorov­Smirnov Test, which confirms that the two datasets come from

different distributions (p­value ≈ 0.0000223). If we consider as computational truth
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Figure 4.8: The distance distributions (left) and the percent per distance away from

the truth (right) of the top scorer per stem over the test dataset as it is split into

human and mouse datasets.

the top scorer per precursor and it duplex then the 69.53% of the computational

truth were ±6nt away from the true mature for HS classifier (see figure 4.10(b)),

while the 87.83% of the computational truth were within the same distance for our

best classifier (see figure 4.6). We also evaluate the statistical difference between

these two distributions using the Kolmogorov­Smirnov Test, which confirms that

the two datasets come from different distributions (p­value ≈ 0.0097).

These results indicate that the complexity of the problem cannot be solved using

a single feature, such as the distance of the starting position of the mature miRNA
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Figure 4.9: The distance distributions (left) and the percent per distance away from

the truth (right) of the top scorer per precursor and its duplex over the test dataset

as it is split into human and mouse datasets.

from the hairpin, even though it provides quite strong classification performance,

requiring even more complex features for solving the problem.

4.4 Comparison with other methods

In section 2.4 we presented a number of studies that use computational methods

to identify the mature miRNA from a miRNA precursor. We were able to compare

the performance of our model with just two of these studies, due to source code and



42 Chapter 4. Results

−40 −30 −20 −10 0 10 20 30 40
0

0.05

0.1

0.15

Distance from true mature

P
er

ce
nt

Average Distance Distribution of Top Scorer over cv

Distance
Percent

from truth

0 8.01%
±1 20.07%
±2 29.89%
±3 37.04%
±4 45.43%
±5 46.78%
±6 47.57%
±7 48.21%

(a) Average distance distribution of Top Scorer in 10–fold cross validation.

−40 −30 −20 −10 0 10 20 30 40
0

0.05

0.1

Distance from true mature

P
er

ce
nt

Average Distance Distribution of Top Scorer Duplex over cv

Distance
Percent

from truth

0 10.60%
±1 26.14%
±2 39.76%
±3 51.73%
±4 63.05%
±5 67.01%
±6 69.53%
±7 71.03%

(b) Average distance distribution of Top Scorer and its duplex in 10–fold cross vali­

dation.

Figure 4.10: The distance distributions (left) and the percent per distance away

from the truth (right) of the computational truth of the HS Naive Bayes classifier

over the 10–fold cross validation.

data unavailability for the rest of the methods. We used the 200 miRNA precursors

in our blind test set as input to both tools and estimate performaces only on those

precursors that were computationally predicted to contain a mature miRNA by each

tool respectively. All precursors in our test set were contained in later versions of

miRBase and were not used to train any of these tools, neither ours.

The first method is the ProMiR by Nam et al. [50], who proposed a method basedProMiR

on paired Hidden Markov Models (HMM) for miRNA precursor identification. The

comparison with this tool was done using 178 precursors out of the 200 precursors

of our test dataset(see paragraph ‘‘The evaluation dataset’’ in section 3.3), those
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precursors that ProMiR identified as true precursors. ProMiR predicted the wrong

stem for 78/178 of these precursors, while our model predicted the wrong stem

for 94/178 precursors, if we consider as computational truth the top scorer of the

Bayesian classifier. For the rest of the precursors, those that the computational

truth was in the same stem as the true mature, we computed the distance distri­

butions for both methods (see figure 4.11). As shown in figure 4.11(a) 55% of the

computational truth were ±6nt away from the true mature for ProMiR (see figure

4.11(a)), while 79.52% of our top scorers were within the same distance, respectively

(see figure 4.11(b)). We also evaluate the statistical difference between the two dis­

tributions shown in figure 4.11 using the Kolmogorov­Smirnov Test, which confirms

that the two datasets come from different distributions (p­value ≈ 0.00074).

The second method is called BayesMiRNAfind by Yousef et al.[72], a web server BayesMiRNAfind

which uses a Naive Bayes Classifier to predict miRNA precursors and incorporates

mature miRNA prediction to increase its performance. The comparison with this

tool was done using 101 precursors out of the 200 precursors of our test dataset(see

paragraph ‘‘The evaluation dataset’’ in section 3.3), those precursors that BayesMiR­

NAfind predicted as true precursors. The BayesMiRNAfind predicted the wrong

stem for 45/101 precursors, while our model predicted the wrong stem for 53/101

precursors, if we consider as the computational truth the top scorer of the Bayesian

classifier. For the rest of the precursors, those that the computational truth was in

the same stem as the true mature, we generated the distance distributions for both

methods (see figure 4.12). As shown in figure 4.12 44.64% of the computational

truth were ±6nt away from the true mature for the BayesMiRNAfind (see figure

4.12(a)), while 85.42% of our top scorers were within the same distance (see figure

4.12(b)). We also evaluate the statistical difference between the two distributions

shown in figure 4.12 using the Kolmogorov–Smirnov Test, which confirms that the

two datasets come from different distributions (p­value ≈ 0.0013).

The confidence our model achieves for ±6nt away from the truth is approxi­

mately double in comparison to the confidence achieved by BayesMiRNAfind for the

same distance, while the confidence achieved by our model is ∼ 30% more than the

confidence achieved by ProMiR for the same distance. Overall, our model achieves

higher confidence for the same distance from the truth than the confidences of the

other methods on the independent test datasets.
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Figure 4.11: The distance distributions (left) and the percent per distance away from

the truth (right) of both ProMiR and our model from the predictions that were within

the same stem as the true mature. In our model we consider as computational truth

the top scorer of the Bayesian model.
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Figure 4.12: The distance distributions (left) and the percent per distance away

from the truth (right) of both BayesMiRNAfind and our model from the predictions

that were within the same stem as the true mature. In our model we consider as

computational truth the top scorer of the Bayesian model.
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Chapter 5

Conclusion

5.1 Discussion

In this thesis we examined the problem of mature miRNA prediction within mam­

malian miRNA precursors. We proposed a Naive Bayes classifier (NBC) that uses

sequence and structure characteristics of the miRNA precursor in order to provide

the position that is most likely to represent the start of each mature miRNAs that

can be produced by the precursor. We select the NBC because it requires a rela­

tively small amount of training data to estimate its parameters, it provides a direct

intuition about the importance of the features used and it has high performance in

many complex real–world problems, despite of its simplified assumptions.

The biological features used in the NBC are a number of position oriented fea­

tures, containing both sequential and structural information of the specific position

on the miRNA precursor, and the distance of the starting position of the mature

miRNA from the hairpin. We selected to use position oriented features in order to

examine the hypothesis that Dicer recognizes a common pattern which appears on

the edges of the mature miRNAs. This hypothesis is confirmed, since the position

oriented features we incorporate into our model tend to lay either in the flanking

regions around the mature miRNA or in positions within the mature, but which are

close to its ends. The distance of the starting position of the mature miRNA showed

that matures tends to be close to the hairpin, suggesting that they are probably

found in positions that do not depend on the actual size of the precursor.

We used experimentally verified human and mouse miRNAs to train and evalu­

ate the performance of a Naive Bayes classifier in terms of AUC and distance from

the truth. Unlike the method presented here, most of the computational tools that

can be used to predict the functional part of the miRNA precursor estimate their

47
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performance accuracy in terms of true positive rate alone, ignoring the false posi­

tive rate ([50], [61], [64]). It is a matter of semantics as well as a great challenge to

define a true negative example when it comes to mature miRNAs. However, a major

issue in such a classification task is not only to maximize the identification of true

positives but also to minimize the false positive rate. In an effort to combine both of

these criteria, our method achieves an average AUC ≈ 0.88 and ∼ 88% of the top

scorer duplexes, on average, were ±6nt away from the truth.

In conclusion, our findings suggest that position specific sequence and structure

information and the distance of the starting position from the hairpin combined

with a simple Bayes classifier achieve a good performance on the challenging task

of mature miRNA identification.

5.2 Future Work

There are a number of open issues regarding the mature miRNA identification prob­

lem. First of all, as a typical pattern recognition problem there are a number of

parameters that we didn’t examine in this thesis. For example, one might consider

different error cost per class with the Naive Bayes classifier. Apart from the NBC

one could also use a stronger classifier such as support vector machines (SVM) or

artificial neural networks. With these classifiers it is easy to include both different

error costs per class and different weights per feature, which could provide more

accurate results.

On the other hand, one could also use as training input the miRNA–miRNA∗

duplex instead of the mature alone. In other words, one will convert the mature

miRNA identification problem to the miRNA–miRNA∗ duplex identification, which

could be what Dicer recognizes after all. The only problem with this approach is

the need of a more accurate definition of the miRNA–miRNA∗ duplex by biologists,

in order to get more precise results.



Appendix A

Supplementary Data

Table A.1: The features sorted based on Kullback–Leibler

divergence.

Feature Description Kullback–Leibler score

Distance of Starting Position from Hairpin (3’stem) 14.20

Distance of Ending Position from Hairpin (3’stem) 10.98

Distance of Starting Position from Hairpin (5’stem) 9.20

Distance of Ending Position from Hairpin (5’stem) 9.12

Distance of Ending Position from End (3’stem) 2.50

Distance of Starting Position from End (3’stem) 2.50

Distance of Ending Position from End (5’stem) 2.48

Distance of Starting Position from End (5’stem) 2.48

Position 8 in flanking region before mature 0.2126

Position 9 in flanking region before mature 0.2026

Position 7 in flanking region before mature 0.1725

Position 7 in flanking region after mature 0.1715

Position 16 in mature 0.1707

Position 8 in flanking region after mature 0.1581

Position 0 in mature 0.1549

Position 7 in mature 0.1420

Position 9 in flanking region after mature 0.1358

Position 6 in flanking region after mature 0.1312

Position 15 in mature 0.1260

Continued on next page
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Table A.1 – continued from previous page

Feature Description Kullback–Leibler score

Position 13 in mature 0.1220

Position 17 in mature 0.1181

Position 3 in mature 0.1156

Position 6 in flanking region before mature 0.1129

Position 18 in mature 0.1129

Position 6 in mature 0.1067

Position 5 in flanking region after mature 0.1008

Position 12 in mature 0.1004

Position 14 in mature 0.0931

Position 4 in mature 0.0900

Position 3 in flanking region before mature 0.0830

Position 5 in mature 0.0805

Position 4 in flanking region before mature 0.0793

Position 2 in mature 0.0749

Position 11 in mature 0.0733

Position 8 in mature 0.0729

Position 20 in mature 0.0728

Position 4 in flanking region after mature 0.0690

Position 1 in mature 0.0687

Position 5 in flanking region before mature 0.0613

Position 1 in flanking region before mature 0.0554

Position 1 in flanking region after mature 0.0516

Position 23 in mature 0.0495

Position 25 in mature 0.0476

Position 2 in flanking region before mature 0.0458

Position 9 in mature 0.0450

Position 22 in mature 0.0431

Position 2 in flanking region after mature 0.0427

Position 21 in mature 0.0407

Position 19 in mature 0.0396

Position 10 in mature 0.0351

Position 24 in mature 0.0299

Continued on next page
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Table A.1 – continued from previous page

Feature Description Kullback–Leibler score

Position 3 in flanking region after mature 0.0286

Table A.2: The AUC of the average ROC curve, over the 10–

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 0nt.

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

1 0.8397 0.8374 0.8366 0.8371

2 0.8455 0.8428 0.842 0.8433

3 0.8594 0.8576 0.8574 0.8577

4 0.8578 0.856 0.8556 0.8566

5 0.8578 0.8556 0.8553 0.8567

6 0.8572 0.8556 0.8551 0.8562

7 0.8589 0.8573 0.857 0.857

8 0.8608 0.8595 0.8601 0.8601

9 0.8606 0.8584 0.8587 0.8591

10 0.8589 0.8587 0.8582 0.8587

11 0.859 0.8567 0.8572 0.8578

12 0.8582 0.8571 0.8575 0.858

13 0.858 0.8574 0.8572 0.8578

14 0.8593 0.8565 0.8577 0.8581

15 0.8599 0.8581 0.8568 0.8571

16 0.8628 0.8582 0.8586 0.8589

17 0.8629 0.8615 0.8586 0.8598

18 0.8629 0.8615 0.8621 0.8624

19 ­ 0.8604 0.8615 0.8618

20 ­ 0.8605 0.8514 0.8617

21 ­ ­ 0.8603 0.8606

Continued on next page
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Table A.2 – continued from previous page

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

22 ­ ­ 0.8601 0.8595

23 ­ ­ ­ 0.8355

24 ­ ­ ­ 0.8337

Table A.3: The AUC of the average ROC curve, over the 10–

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 3nt.

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

1 0.8413 0.839 0.8379 0.8386

2 0.8572 0.8557 0.8549 0.8556

3 0.8588 0.8572 0.8571 0.8577

4 0.8578 0.8563 0.8561 0.8571

5 0.8567 0.8554 0.8551 0.8565

6 0.857 0.8554 0.855 0.8561

7 0.8578 0.8536 0.854 0.8542

8 0.8576 0.8554 0.8553 0.8557

9 0.8603 0.858 0.8581 0.8585

10 0.8586 0.8575 0.8576 0.8581

11 0.8585 0.8563 0.8566 0.8572

12 0.8616 0.8564 0.8568 0.8572

13 0.8628 0.8602 0.8596 0.8599

14 0.8623 0.8605 0.8608 0.861

15 0.8655 0.8611 0.8611 0.8614

16 0.8647 0.8634 0.8617 0.8618

Continued on next page
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Table A.3 – continued from previous page

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

17 0.8648 0.8629 0.8643 0.8646

18 0.8663 0.8642 0.8637 0.8648

19 0.8671 0.8647 0.8652 0.8654

20 0.8669 0.8658 0.8656 0.8657

21 0.8669 0.8642 0.8668 0.867

22 0.8657 0.8653 0.8665 0.8673

23 0.8648 0.8635 0.8675 0.8661

24 0.864 0.8619 0.8666 0.867

25 ­ 0.8619 0.8671 0.8663

26 ­ 0.8606 0.8663 0.8647

27 ­ ­ 0.8654 0.8639

28 ­ ­ 0.8655 0.863

29 ­ ­ ­ 0.8635

30 ­ ­ ­ 0.8633

Table A.4: The AUC of the average ROC curve, over the 10–

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 5nt.

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

1 0.8398 0.8375 0.8364 0.8370

2 0.8565 0.8547 0.8542 0.8549

3 0.8585 0.8568 0.8562 0.8573

4 0.8570 0.8554 0.8551 0.8560

5 0.8563 0.8550 0.8542 0.8554

Continued on next page
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Table A.4 – continued from previous page

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

6 0.8558 0.8542 0.8538 0.8548

7 0.8574 0.8559 0.8555 0.8554

8 0.8595 0.8543 0.8543 0.8546

9 0.8590 0.8570 0.8572 0.8576

10 0.8571 0.8570 0.8564 0.8569

11 0.8503 0.8549 0.8552 0.8558

12 0.8505 0.8524 0.8564 0.8545

13 0.8508 0.8526 0.8558 0.8546

14 0.8546 0.8537 0.8567 0.8548

15 0.8566 0.8568 0.8596 0.8588

16 0.8555 0.8588 0.8613 0.8605

17 0.8584 0.8577 0.8613 0.8596

18 0.8595 0.8615 0.8639 0.8626

19 0.8597 0.8614 0.8639 0.8633

20 0.8544 0.8614 0.8642 0.8639

21 0.8546 0.8576 0.8652 0.8642

22 0.8556 0.8581 0.8628 0.8616

23 0.8561 0.8600 0.8635 0.8623

24 0.8563 0.8585 0.8644 0.8640

25 0.8563 0.8588 0.8650 0.8625

26 0.8554 0.8597 0.8651 0.8634

27 0.8547 0.8571 0.8662 0.8637

28 0.8532 0.8573 0.8661 0.8640

29 ­ 0.8561 0.8658 0.8628

30 ­ 0.8551 0.866 0.8628

31 ­ ­ 0.8649 0.8636

32 ­ ­ 0.8637 0.8630

33 ­ ­ ­ 0.8617

34 ­ ­ ­ 0.8614
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Table A.5: The AUC of the average ROC curve, over the 10–

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 7nt.

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

1 0.8250 0.8237 0.8279 0.8276

2 0.8335 0.8320 0.8357 0.8357

3 0.8443 0.8423 0.8458 0.8458

4 0.8568 0.8555 0.8588 0.8586

5 0.8592 0.8574 0.8607 0.8601

6 0.8495 0.8509 0.8563 0.8558

7 0.8523 0.8542 0.8588 0.8593

8 0.8519 0.8544 0.8592 0.8584

9 0.8538 0.8547 0.8602 0.8594

10 0.8571 0.8560 0.8619 0.8607

11 0.8583 0.8591 0.8651 0.8641

12 0.8583 0.8603 0.8652 0.8650

13 0.8583 0.8604 0.8648 0.8635

14 0.8584 0.8598 0.8640 0.8639

15 0.8514 0.8597 0.8649 0.8638

16 0.8501 0.8570 0.8647 0.8621

17 0.8519 0.8568 0.8639 0.8613

18 0.8535 0.8579 0.8658 0.8637

19 0.8529 0.8591 0.8661 0.8649

20 0.8535 0.8583 0.8676 0.8654

21 0.8547 0.8590 0.8672 0.8650

22 0.8556 0.8630 0.8680 0.8668

23 0.8560 0.8604 0.8680 0.8668

24 0.8534 0.8596 0.8694 0.8674

25 0.8524 0.8604 0.8713 0.8696

26 0.8535 0.8596 0.8690 0.8682

Continued on next page
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Table A.5 – continued from previous page

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

27 0.8538 0.8507 0.8685 0.8678

28 0.8539 0.8609 0.8695 0.8686

29 0.8542 0.8611 0.8702 0.8684

30 0.8537 0.8614 0.8704 0.8687

31 0.8531 0.8604 0.8706 0.8691

32 0.8512 0.8600 0.8716 0.8692

33 ­ 0.8591 0.7150 0.8686

34 ­ 0.8578 0.8709 0.8686

35 ­ ­ 0.8708 0.8684

36 ­ ­ 0.8703 0.8680

37 ­ ­ ­ 0.8678

38 ­ ­ ­ 0.8679

Table A.6: The AUC of the average ROC curve, over the 10–

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 9nt.

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

1 0.8445 0.8423 0.8418 0.8420

2 0.8455 0.8534 0.8430 0.8431

3 0.8434 0.8408 0.8405 0.8392

4 0.8439 0.8432 0.8465 0.8443

5 0.8471 0.8468 0.8500 0.8482

6 0.8454 0.8469 0.8518 0.8456

7 0.8551 0.8570 0.8512 0.8557

Continued on next page
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Table A.6 – continued from previous page

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

8 0.8577 0.8598 0.8631 0.8584

9 0.8557 0.8586 0.8618 0.8517

10 0.8511 0.8561 0.8601 0.8524

11 0.8520 0.8569 0.8608 0.8529

12 0.8529 0.8588 0.8627 0.8543

13 0.8540 0.8591 0.8636 0.8548

14 0.8567 0.8616 0.8661 0.8577

15 0.8578 0.8640 0.8686 0.8601

16 0.8599 0.8634 0.8676 0.8593

17 0.8540 0.8644 0.8693 0.8612

18 0.8548 0.8631 0.8392 0.8607

19 0.8540 0.8629 0.8691 0.8614

20 0.8544 0.8632 0.8694 0.8610

21 0.8558 0.8636 0.8696 0.8614

22 0.8555 0.8640 0.8703 0.8632

23 0.8562 0.8637 0.8711 0.8631

24 0.8568 0.8648 0.8715 0.8637

25 0.8577 0.8654 0.8721 0.8654

26 0.8583 0.8662 0.8727 0.8661

27 0.8549 0.8666 0.8728 0.8663

28 0.8567 0.8651 0.8744 0.8669

29 0.8555 0.8667 0.8732 0.8672

30 0.8565 0.8658 0.8747 0.8691

31 0.8561 0.8668 0.8741 0.8685

32 0.8571 0.8670 0.8758 0.8695

33 0.8572 0.8671 0.8759 0.8686

34 0.8562 0.8673 0.8759 0.8702

35 0.8558 0.8662 0.8760 0.8704

36 0.8550 0.8655 0.8762 0.8703

Continued on next page
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Table A.7: The average mean and standard deviation of the average distributions

when the computational truth is the middle point defined by the range of n top

scorers for n ∈ {2, . . . , 6} over the 10–fold cross validation.

Number of Top scorers Average mean Average STD

2 0.1261 6.0287

3 0.3589 5.6030

4 0.3694 5.5208

5 0.5648 5.5382

6 0.6015 5.5651

Table A.8: The average mean and standard deviation of the average distributions

when the computational truth is the mean value of n top scorers for n ∈ {2, . . . , 6}
over the 10–fold cross validation.

Number of Top scorers Average mean Average STD

2 0.7485 6.0201

3 0.5838 5.6456

4 0.8299 5.4579

5 0.8012 5.4983

6 0.9364 5.4741

Table A.6 – continued from previous page

Number of

Window 18 Window 20 Window 22 Window 24
Position

Oriented

Features

37 ­ 0.8651 0.8771 0.8690

38 ­ 0.8641 0.8762 0.8698

39 ­ ­ 0.8757 0.8690

40 ­ ­ 0.8753 0.8685

41 ­ ­ ­ 0.8690

42 ­ ­ ­ 0.8686
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