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Abstract

MicroRNAs (miRNAs) are small single stranded RNAs, on average 22nt
long, generated from endogenous hairpin-shaped transcripts with post
transcriptional activity. Although many computational methods are
currently available for identifying miRNA genes in the genomes of var-
ious species, very few algorithms can accurately predict the functional
part of the miRNA gene, namely the mature miRNA. We introduce a com-
putational method that uses a Naive Bayes classifier to identify mature
miRNA candidates based on sequence and secondary structure infor-
mation of the miRNA precursor. Specifically, for each mature miRNA,
we generate a set of negative examples of equal length on the respec-
tive precursor(s). The true and negative sets are then used to estimate
probability distributions for the sequence and secondary structure com-
position on each position along the mature or in flanking regions around
it, as well as for the distances of the starting and ending position of the
mature from the precursor’s hairpin and ends. The divergence between
these distributions is estimated using the symmetric Kullback-Leibler
metric. The features at which the two distributions differ significantly
and consistently over a 10-fold cross-validation procedure are used as
features for training the Naive Bayes classifier. We used experimentally
verified human and mouse miRNA data to train the classifier and a per-
formance of AUC =~ 0.88 was achieved using a consensus averaging
over a 10-fold cross-validation procedure. Moreover, we examined four
strategies in order to provide the most accurate candidate mature, based
on the ranking provided by our model. For each strategy, the confidence
that the computational truth was +6nt away from the true mature was:
a) 86.88% for the top scorer, b) 88.25% for the middle point of 4 top
scorers, ¢ 89.34% for the mean value of 4 top scorers and d) 87.83%
for the top scorer and its duplex. Our findings suggest that position

specific sequence and structure information and the distance features



combined with a simple Bayes classifier achieve a good performance on

the challenging task of mature miRNA identification.



NepiAnyn

Ta microRNAs sivat pikpd povoxkideva popta RNAs, pe prnkog 22 vouk-
Aeondinv katd péoo 6po, ta oroia rapdyoviat ano evdoyevr) petaypada pe
Hop®r| ‘poupkEtag’ KAt £€Xouv pEta-petaypadikn Spaoctnpidtnta. Iapodo
IOV UIMAPXO0UV IMOAAEG UToAoylotikég pébodotl Srabéopeg yla v avay-
vopilon microRNA yovidiov oto yovidiopa moAA®v opyaviopev, oAU Atyot
aAyopiOpot propouv e akpiBela va rpoBAEWPouv T0 AETTOUPYIKO PEPOG EVOG
miRNA yovidiou, yveotd og dpipio miRNA. Ztnv epyaocia autr) rpoteivoupe
pla véa urtodoylotikr pébodog, 1 oroia xpnowpornotel évav Naive Bayes
classifier yia va avayvepidet unnopripla opipa popta miRNA pe Baon tv
aroAouBia kat v deutepotayn doprn evog npwipou miRNA (precursor
miRNA). Zuykekpipéva, ya kabe wpiypio miRNA, napdayoupe éva ouvoAo
apvnukov rapadetypdatev ioouv peyéboug, and ta avtiototya npoipa popa
miRNA. Ta 6elypata amod ta mpaypatika kat apvnukda dsbopéva xpnot-
PoImolouviatl KAatomy yld va eKTIHNC0UHE T KATAVOREG IBavotiov tov
Yéoewv mou Ppilokovial eite Kata PrKOg T0U MP1I0U P0piou, €ite O TEPt-
0XES YUP® Ao autod, Kpatmviag MANPodopieg yia v akoAoubida kat tnv
deutepotayr) dopr) g Yéong, KaBWG Kat yla v eKTIPN 0T TV ATTIOOTACERDV
NG APXIKNG Kal TEAIKEG 9€0ng £VOG MP1IOU POPiou armod ta opild ToU KOov-
TIVOTEPOU OXNHATIOHOU ‘POUPKETAG’ TOU TP@1IOU popiou, KabBng Kal ano
Ta AKpa tou 610U tou mpopou popiou. H arodxkAion petady auviov tov
KATAVOP®V UTTOAOYidetal amo v OUpHeIpkn arnoxkAton tov Kullback-
Leibler. Ta Xapakinploukd t@V OMOi®V ot U0 katavopég Stapépouv
ONHAVIIKA XPNO0IIoI0UVIAL ©§ XAPAKINPIOTKA Yid TV eKnaibeuon) tou
Naive Bayes classifier. Xpnotponowoupe nielpapatikd embeBaiopéva miRNA
b6edopéva arno avlp®Ito Kat MOoVIiKl yid v eKnaibeuor) t1ou HoviEAou pag
Kat ermtuyyavoupe péon anodoon AUC =~ 0.88 ypnowuornowwviag 10-
fold cross validation. Eruréov egetadoulie 1€00ep1g OTPATNYIKEG Yia va
MAPEXOUNE PE Peyadutepn akpiBela éva unmoyrnplo Opio poplo, Paocto-

pévotl otnv S1dtadn v AroteAeoPAT®OV IOV TTApEXEL T0 Poviédo pag. Ta



KAOe pa otpatnyiky, n PeBadtnta ot n uroAoylotiky airnbsia Bpioke-
1a1 £6nt pakpld and to npaypatko opipo miRNA sivat: a) 86.88% yia
10 UTIOWN P10 Pe v uynAdtepn emidoon (top scorer), B) 88.25% yiua 1o
UTIOYN P10 [oU oXNUATIdETal amno 10 Pecaio oTolxeio Tou dlaotatog rmou
opidouv ot téooeptg unoWnPlot pe v vwnlotepn emidoon, ¢ 89.34% yua
10 UmoYn@1o mou oxnuatidetal and ) PeoH) T Tou §1a0TtHPaATtog mou
opidouv o1 téooepig unownelol pe v uynidtepn emnidoon, 6) 87.83% yua
TOV UTIOYH P10 P TNV UPnAotepn emnidoor (top scorer), KAl TV AMEVIAVTL
aldAndouyxia tou Onwg opidetat and v deutepotayr Sopr] TOU IIPOIIO
popiou (duplex). Ta aroteAéopatd pag MPOTEIVOUV OTL 1 TANPOPOPIEg
akoAoubidg kat deutepotayrg dopurg rmou napgyovial oe emninedo Yeoewv,
KaO(G KAl Ol XAPAKINPIOTIKEG ATTOOTACELS TOV OPI®V TOU MP1I0U Popiou
miRNA oe ocuvbuaopo pe évav Naive Bayes classifier ermtuyyxdavouv modu
KaAr) anoboon oto 5UoKoA0 TPdBANIIA TNG AVAYVEPLoNG TOV OPIHIEV Lopinv
miRNA.
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Chapter 1

Introduction

MicroRNAs (miRNAs) are an abundant class of ~ 22nt long endogenous non-
protein-coding RNAs that regulate gene expression by binding to target sites on
3’UTRs of messenger RNAs (mRNAs). This binding results primarily in transla-
tional repression or mRNA degradation [54], although an enhancement of the target
gene’s expression has also been observed [65]. Mature miRNAs are derived from
longer (70-100nt) precursors, the pre-miRNAs, which form a hairpin-like structure
that contains one or two mature miRNAs in either or both of its arms. A large
body of experimental findings indicates that the regulatory action of miRNAs is es-
sential for most organisms as these tiny molecules play a central role in multiple
processes, including development timing [41, 56], cell proliferation and differenti-
ation [26, 66, 58, 16, 10], apoptosis [69, 7, 22], as well as in numerous diseases
[28, 46, 38, 51, 27] and anti-viral defense [49, 24] (for more detailed description see
also section 2.3).

An important step towards the understanding of miRNA-mediated regulation
would be to assemble a complete catalog of miRNA genes, their products and their
targets. Torwards this goal, experimental cloning efforts have successfully identified
highly expressed miRNAs from various tissues and various organisms. However,
cloning methods have a number of shortcomings, including high costs, while they
are are highly biased towards miRNAs that are abundantly and/or ubiquitously ex-
pressed. On the other hand, computational prediction of miRNAs could become a
powerful tool for finding tissue-specific or lowly expressed miRNAs. Several compu-
tational methods have been developed to facilitate the discovery of miRNAs (reviewed
in [5]). Most of them focus on the discovery of either novel miRNA genes in the
genomes of various species or possible mRNA targets of the known miRNAs. On the

contrary, few attempts have been made to computationally predict the functional



2 Chapter 1. Introduction

part of the miRNA precursor, namely the mature miRNA. A number of studies ([50],
[72], [61]) combine miRNA gene prediction with the identification of a possible start
position for the mature. To our knowledge, only one study [64] focuses exclusively

on mature miRNA prediction, utilizing thermodynamic and structural information.

1.1 Objectives

The purpose of this thesis is to build a Naive Bayes classifier capable of indentifying
the mature miRNA(s) within a precursor miRNA with high accuracy. Torwards this
goal, we consider biological features of miRNA precursors such as position specific
sequence and structure information. We investigate numerous combinations of
such features both within the mature as well as in regions around it. Features
are selected according to their effect on classification performance in a two-class
problem(true vs false mature), whereby all possible mature candidates that can
be generated by sliding along the precursor are tested. The model’s output is the

predicted start position of the mature miRNA(s) for each precursor sequence.

1.2 Thesis Organization

This thesis is organized as follows: chapter 2 presents the biological properties of
miRNAs, such as their biogenesis and functionality, and reviews other computa-
tional methods that have been developed to identify mature miRNAs. In chapter
3, we describe the methodology used to develop our Bayesian classifier, while in
chapter 4 we analyze the training and evaluation of our model and contrast our
findings with oter methods. Finally, in chapter 5 we conclude and propose some

future work.




Chapter 2

Background Theory

MicroRNAs (miRNAs) are small 19-25 nucleotides long, single-stranded RNAs that
are generated from endogenous hairpin shaped transcripts [35]. MicroRNAs func-
tion as regulatory molecules in post-transcriptional gene silencing by base pairing
with target mRNAs, which leads to mRNA cleavage or translational repression, de-
pending on the degree of complementarity between miRNA and its target transcript.

The first known miRNA, lin-4, was discovered in 1993 by Victor Ambros and
his colleagues while studing the heterochronic gene lin-14 in C. elegans [41]. Since
the discovery of the first miRNA in 1993, thousands of miRNA genes have been
identified from a wide range of eukaryotic organisms such as plants, mammals, fish,
birds, worms and flies. Although it has been difficult to assign a specific function
to miRNAs, important roles are emerging including the control of developmental
timing, tumor suppression, cell differentiation and apoptosis.

In this chapter, we review the existing literature regarding the biogenesis (sec-
tion 2.1), their mechanisms of action (section 2.2) and some of the known functions
of miRNAs (section 2.3), as well as computational methods that focus on mature

miRNA prediction (section 2.4).

2.1 Biogenesis

Although miRNAs are functionally similar to short interfering RNAs (siRNAs), they
are unique in terms of their biogenesis. MicroRNA genes are transcribed into the
pri-miRNAs, long double-stranded unstructured precursors, which sometimes can
be several thousands bases long, with a 5’ cap structure and a 3’ Poly(A) tail [43].
It remains unclear which RNA polymerase is responsible for the transcription, al-

though several observations have suggested that RNA polymerase II may be the key

3



4 Chapter 2. Background Theory

polymerase engaged in miRNA gene transcription [8, 43]. The most important of

these findings are:

e The pri-miRNAs are transcribed as long molecules, which sometimes can be
several thousands bases long, with a 5’ cap structure and a 3’ Poly(A) tail,

which are unique properties of polymerase II gene transcripts [43].

e Stretches with more than four U’s, which terminate the transcription of poly-

merase III, widely exist in pri-miRNAs sequences [57].

The primary transcript (pri-miRNA) is enzymatically processed in the nucleus
by the Microprocessor complex into the precursor miRNA (pre-miRNA), a stem-
loop of about 60-100 nt with a 2-nt 3’ overhang. The Microprocessor complex in
mammals consists of a specific ribonuclease of RNase III endonuclease family called
Drosha which acts together with the cofactor called DGCRS8 or Pasha. The latter
is a double-stranded RNA binding protein that dimerizes with Drosha [39]. It is
not very clear how the Microprocessor complex recognizes primary RNA substrates
and selects its cleavage sites, since pri-miRNAs in animals don’t seen to share any
common sequence motifs. The cleavage site identification might result from the 3D
structure of pre-miRNA. It was shown that in humans Drosha selectively cleaves
RNA hairpin with a large terminal loop, greater than or equal to 10nt. It uses the
distance information to decide where to cut: from the junction of the loop and the
adjacent stem, Drosha cleaves approximately two helical RNA turns into the stem
to produce the pre-miRNA [74].

Following the nuclear processing by Microprocessor in mammals, pre-miRNAs
are transported to the cytoplasm by Exportin-5, a nucleus export factor, in a Ran-
GTP dependent manner [33, 71]. Exportin-5 was originally known as a minor export
factor for tRNAs, because it can transport tRNAs when the primary export factor,
Exportin-t, is depleted or overloaded [23]. The binding of Exportin-5 to pre-miRNA
is specific because a stem must be larger that 14 base pairs with a base-paired 5’
end and a short 3’ overhang in order for exportin-5 to bind efficiently [73].

Being exported from the nucleus, pre-miRNAs are subsequently processed into
approximately 22 nucleotide miRNA duplexes by the cytoplasmic RNase III Dicer [6].
Dicer is a highly conserved protein that is found in almost all eukaryotic organisms.
Some organisms contain multiple Dicer homologues, in which different Dicer iso-
types are often assigned to take on distinct roles. For example, in D.megalogaster,
Dicer-1 is required for pre-miRNA cleavages, whereas Dicer-2 is needed for siRNA

generation [42].
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(a) Biogenesis in mammals. (b) Biogenesis in plants.

Figure 2.1: Model for microRNA biogenesis. Biogenesis of the mature miRNA
is the result of a series of cleavage processes that begins with a primary miRNA.
In mammals (a), pri-miRNA is processed in the nucleus into a precursor miRNA
hairpin (60-100nt long) by Drosha; then the precursor is transported by Exportin-5
into the cytoplasm, where it is cleaved into the mature miRNA (~22nt long) by Dicer.
In plants (b), the pri-miRNA is processed in the nucleus into a precursor miRNA
hairpin (60-100nt long) by Dicer; then the precursor is cleaved into the mature
miRNA (~22nt long) by Dicer also, and the duplex miRNA-miRNA* is transported
by HASTY, a plant homologue of Exportin-5, into the cytoplasm.

The maturation of miRNAs in plants is very different from that in animals. First
of all, plant miRNA precursors are quite diverse in structure, and their stem-loops
are usually longer than in animals pre-miRNAs. Moreover, no Drosha homologue
has been identified in plants so far. However, four Dicer homologues exist in Ara-
bidosis Thaliana, and two of these Dicer proteins are likely to be localized in the
nucleus. Dicer-like protein-1 (DCL1) possible performs both Drosha and Dicer-like
activities for miRNA maturation [53]. Since DCL1 is a nucleus protein, this indicates
that mature miRNAs might be generated in the nucleus in plants, unlike animals
where the whole precursor is exported to the cytoplasm. While Exportin-5 transfers
pre-miRNAs to the cytoplasm in animals, the Arabidopsis homolog of Exportin-5,
HASTY, is proposed to export the miRNA-miRNA* duplex to the cytoplasm.

Biogenesis in plants
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Figure 2.1 shows an overview of the microRNA biogenesis pathway for both
mammals and plants. Overall, the biogenesis of a mature miRNA is the result
of a series of cleavage processes that begin with a primary miRNA. Moreover, the
regulatory mechanisms of miRNA maturation have different complexities between

mammals and plants, despite their similarities.

2.2 MicroRNAs in action

After the pre-miRNA is processed into a miRNA-miRNA* duplex by Dicer, one of the
RNA strands is incorporated into RISC for target recognition. RISC is composed
of Dicer, Argonaute (AGO) and other non-specified proteins. AGO proteins bind to
either miRNAs or siRNAs to create the core of the complex. Different Ago paralogs
exist across species, and variants of the AGO protein within the same specie can
have different functions. It is likely that the different AGO homologues along with
the variable associating factors allow for different subtypes of RISC in order to
provide a specific response to a particular siRNA and miRNA. RISC has many diverse
functions in both siRNA and miRNA mechanisms. It acts as an effector complex in
translational repression and mRNA cleavage [12, 14].

MiRNAs in animals mostly suppress translation of their target mRNAs due to
an imperfect base-pairing within 3’ untranslated regions (UTRs). By binding to the
3’UTR of the mRNA, the miRNA has the ability to inhibit translation by directly
interfering with translation initiation factors or by disrupting poly(A) tail function
(see figure 2.2).

The distinction between translation repression and mRNA cleavage mediated
by miRNAs relies primarily on the degree of complementarity between the miRNA
and its target. In plants, miRNA regulation leads to mRNA cleavage due to the near
perfect complementarity in base-pairing between miRNA and their target mRNA
[44]. In mammals, miRNAs usually don’t have perfect complementarity with their
target thus leading to translational repression. There are a number of exceptions
to the above rules including the mammalian mir-196 which leads to cleavage of
Hoxb8 mRNA instead of the expected translational repression [70] and the plant
miR-172 which acts as a translational repressor [11] . While perfect base-pairing
is thought to be the critical feature of miRNA-mediated mRNA cleavage, it is not
always sufficient in plants, suggesting the need for supplementary catalytic activity
by RISC [11]. Regardless of the species, perfect match between the miRNA and

the target mRNA is required for efficient cleavage, especially considering the precise
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Cytoplasm o Yo
ytoplas miRNA-miRNA*

translation repression mRNA cleavage

Figure 2.2: MicroRNAs in action. The mature miRNA (indicated by red), which
forms one strand of the miRNA-miRNA* duplex , is incorporated into a large pro-
tein complex, termed RNA induced silencing complex (RISC), where it functions to
guide RISC to target mRNA. Depending on the degree of complementarity between
miRNA and its target transcript, miRNA either leads to translational repression of
the target transcript (not perfect complementarity) or to mRNA cleavage (near perfect
complementarity).

location of the cut between residues 10 and 11 of the miRNA [44] (see figure 2.2).

2.3 MicroRNA Functionality

MicroRNAs have been implicated in biological processes ranging from developmental
timing to apoptosis. As biologists discover the role of microRNAs in even more
processes, the importance of these tiny RNAs molecules will become more clear.
The first biological process for which scientists discovered the effect of microR-
NAs was the developmental timing in C. elegans, where microRNA lin-4 and let-7
played a role [41, 56]. Lin-4 and let-7 bind to multiple conserveds sites in the 3'UTR
of the lin- 14 and lin-41 transcripts, respectively, through direct but imprecise base-
pairing, thus inhibiting translation [41, 63]. In C. elegans, down-regulation of the
LIN-14 protein at the end of the first larval stage initiates the second larval stage
[41]. Lin-41, on the other hand, regulates the developmental transition from the
last larval stage to the adult stage [63]. Lin-4 and let-7 also regulate two other
genes, lin-28 and lin-57, respectively [48, 1]. Lin-28 encodes an RNA-binding pro-

Developmental timing
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tein that is important for neuronal differentiation of embryonic carcinoma cells [68],
while lin-57 encodes a protein responsible for the terminal differentiation of hypo-
dermis in C. elegans [1]. Since the original C. elegans experiments, the regulatory
abilities of lin-4 and let-7 have been extended to flies and mammals [59]. In mice,
these miRNAs inhibit expression of lin-41, which is involved in key developmental
events such as limb formation [59]. Studies of three miRNAs in Drosophila, let-7,
miR-125(the lin-4 homolog) and miR-100, not only show their up regulation during
major points of development but also demonstrate the requirement for concurrent
expression of a hormone in order to be functionally expressed [60]. Important mRNA
targets responsible for developmental timing have also been found in Arabidopsis
thaliana, suggesting that miRNA regulation in morphogenesis is a primitive mech-
anism [17, 3].

Apart from guiding developmental timing, miRNAs have also been established
as potent controllers of cell proliferation and differentiation. Although the division
of cells is imperative for the growth of an organism, it can also be detrimental when
occurring at inappropriate times. The latter is the hallmark of cancer, and several
miRNAs have been shown to be up regulated in tumors (see paragraph 2.3 - Dis-
ease). Mutation studies in Drosophila show that disruption of miRNA processing
causes stem cells to be locked between the G1 and S phases, thus halting division
[26]. A neuron-specific miRNA, miR-132, is a target of the transcription factor,
cAMP-response element binding protein. It regulates neuronal growth by decreas-
ing the levels of a GTPase-activating protein [66]. Another brain-specific miRNA,
miR-134, is expressed in the synapto-dendritic compartment of rat hippocampal
neurons, where it is capable of down-regulating Limk-1, a protein responsible for
spine development [58]. Regulatory roles of miRNAs are not limited to the brain.
Adipose cell differentiation has been shown to be partially controlled by the expres-
sion of miR-143 [16]. Also, miR-1 and miR-133 are important regulators of skeletal
muscle proliferation and differentiation [10]. Since cell growth and differentiation
are highly dynamic processes, it is no wonder that miRNA with the specific and
fast-acting regulatory abilities play a vital role in shaping these processes.

Apoptosis or programmed cell death, is an integral part of animal tissue devel-
opment. Apoptosis is an evolutionarily conserved process that allows animals to
remove cells that are useless or that are detrimental for survival. Once apoptosis
is activated, caspase proteins cleave both the structural and functional elements of
the cell. Therefore, cell death and survival depend largely on the control of active

caspases in the cell. Because caspases are ubiquitous, it makes sense that miRNAs
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would play a role in their regulation. Indeed, in the Drosophila eye, the absence of
miR- 14 leads to an increase in the cell death effector, Drice, suggesting that miR-14
is an inhibitor of apoptosis [69]. Likewise, the bantam gene encodes an miRNA that
when over-expressed, it suppresses apoptosis in the Drosophila retina. One of the
identified targets for bantam is the pro-apoptotic gene, hid, whose mRNA contains
sequences that ase complementary to bantam [7]. It has been known for quite
some time that viruses must prevent apoptosis in order to survive in the host cell.
Recently, it has been discovered that the herpes simplex virus-1 inhibits apopto-
sis through a latency-associated miRNA (miR-LAT) that modulates TGF-3 signaling
[22]. By using miRNAs instead of proteins in the inhibition of apoptosis, viruses are
able to survive as well as evade immune detection. As functional studies of miRNA
continues, the list of targets involved in apoptosis will likely grow radically.

Although miRNAs have been established as being vital for animal development,
they are also associated with diseases when their repressing activities are compro-
mised. Some of miRNAs, including miR-143 and miR-145, have been suggested
to act as tumor suppressors. Thus, their down-regulation leads to tumorigenesis
[28, 46]. The exact targets for these miRNAs have not been elucidated, but they are
likely to be genes that regulate cell cycle. Another study found that miR-15 and
miR-16 directly suppresses the BCL2 oncogene [13]. Furthermore, the previously
discussed miRNA, let-7, has been linked to RAS, a potent activator of cell transfor-
mation [31]. Several different miRNA clusters have also been associated with the
MYC oncogene [38, 51, 27]. Although the majority of miRNAs are down-regulated
in cancers, some including miR-21 are up-regulated due to their anti-apoptotic
effects [9]. Whether miR-21 has a direct role in cancer progression or is simply
differentially modulated in tumors still needs to be clarified.

Due to their involvement in cancer, miRNAs may serve as important targets
for therapeutic intervention. Indeed, experiments are already underway in model
systems to inactivate miRNAs that may serve as oncogenes [29, 36, 19]. However,
the new era of therapeutic targeting of miRNAs is not limited to cancer. A recent
study of miR-375, a pancreatic-specific miRNA that regulates insulin secretion,
suggests that miRNA therapies may also be applicable to diabetes [55]. As more
miRNAs are linked to diseases, it is possible that this approach can be applied to
virtually any organ system in the body.

While microRNAs are implicated in diseases caused by malfunctions in the cel-
lular machinery, they also play an important role in preventing diseases caused by

viruses. Scientists studying plants first proposed that miRNAs may be able to in-

Disease

Anti-viral defense
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duce post transcriptional gene silencing of viral mRNAs [49, 24]. In plants, miRNAs
have anti-viral capabilitiesy with short-lived effects because evolving viral factors
eventually inactivate them [62]. In fact, many viruses have the ability to evade
silencing by the host, but some viruses are better adapted for evading cellular ma-
chinery than others. In humans, for example, the adenovirus can block host miRNA
biogenesis, thus squelching the very anti-viral miRNAs that are meant to stop ade-
novirus replication [45]. Also, tissue culture experiments show that the primate
foamy virus type I (PFV-1) can escape silencing by miR-32 with a silencing suppres-
sor protein called Tas [40]. These observations suggest that host miRNA-mediated
defence cannot always overcome viral attacks. However, these experiments do not
account for the possibility of defence responses mounted by multiple miRNAs work-
ing together. A study of the hepatitis C virus demonstrates that the introduction of
multiple siRNAs targeted to different areas of the viral genome prevents the virus

from escaping siRNA-silencing [67].

2.4 Related Work

One of the prominent characteristics of miRNAs is that their expression is spatially
and temporally regulated. Many miRNAs are highly expressed in certain organs
or cell types and some are only expressed in certain stages during development.
Considering this tight regulation and their small size, it is no wonder why miRNAs
were not identified earlier, despite their wide spread occurrences in different species.
From the very beginning, computational approaches have been extensively used in
the research for novel miRNAs. Most computational methods focus either on the
discovery of new miRNA genes in the genome of various species or the prediction
of mRNA targets for the known miRNAs. On the contrary, few attempts have been
made to computationally predict the functional part of the miRNA precursor, namely
the mature miRNA. A number of studies ([50], [72], [61]) combine miRNA gene
prediction with the identification of a possible start position for the mature. To our
knowledge, only one study [64] focuses exclusively on mature miRNA prediction.
Nam et al. [50] proposed a probabilistic co-learning method based on paired hid-
den Markov Model (HMM), called ProMiR, to implement a general miRNA prediction
method capable of to identifying close homologs as well as distant homologs. The
method combines both sequential and structural characteristics of miRNA genes in
a probabilistic framework, and simultaneously decides whether a miRNA gene and

aregion of mature miRNA are present by detecting the signals for the site cleaved by
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Drosha. The accuracy of mature miRNA region prediction through was evaluated
through 5-fold cross-validation with 136 known miRNAs. The measures used for
assessment were the means of absolute distances and the square root of the mean
of the squares. They also evaluated the predicton of the orientation of the mature
region, with a mean accuracy of 72%.

Yousef et al. [72] presented BayesmiRNAfind, a Naive Bayes classifier that
predicts miRNAs based on their secondary structure and sequence. The major
novelty of their work is the combination of data from multiple species, in order
to create a more stable learning process. As far as the mature miRNA prediction
is concerned they assume that only one mature miRNA is associated with each
precursor and they are using the mature prediction for extracting the features of the
classifier. Furthermore, they do not provide any evaluation performance associated
with the mature prediction task.

Sheng et al. [61] proposed a computational method, called mirCoS, that uses
three support vector machines (SVM) models sequentially to discover new miRNA
candidates in mammalian genomes based on sequence, secondary structure and
conservation. The first SVM uses features from sequence conservation of miRNA
precursors, the second SVM uses features from the secondary structure of miRNA
precursors and its conservation, while the last one focuses on mature miRNA pre-
diction. For the third SVM the most discriminatory features measured the amount
and conservation of base-pairing within the part of the predicted secondary struc-
ture corresponding to the miRNA. This is readily explained by the fact that mature
miRNAs are always on the stems of hairpin structures, and the part of a stem that
corresponds to a miRNA tends to have a high level of base pairing. They also es-
timated the method’s performance using a repeated holdout scheme and obtained
an average sensitivity of 85%.

Tao [64] proposed a method that focuses exclusively on mature miRNA pre-
diction, utilizing thermodynamic and structural information of the precursor RNA.
A simple K-NN model is employed for learning and predicting the mature miRNA,
using features such as the distance of the mature from the ssRNA tail and loop and
the length of the stem, where mean and standard deviation were calculated for each
category. The method predicted as mature miRNA the candidate with the small-
est score, using a window of 21 base pairs sliding along the precursor’s sequence.
Using 885 mature miRNA on 866 miRNA precursors as training samples, the algo-
rithm predicted 79.4% of the 2780 test samples on 2722 miRNA precursors in 44

species. For human miRNAs, the prediction rate was 84.7% on 346 test mature

BayesMiRNAfind - 2006

mirCoS - 2007

Tao - 2007



12 Chapter 2. Background Theory

miRNA genes with the rest 127 mature miRNAs serving as training samples.

Let’s briefly point out some disadvantages of the current methods used to pre-
dict the mature miRNA within a hairpin stem-loop. Most of the above methods
hypothesize, direct or indirect, that the hairpin stem-loops contain one only mature
miRNA ([50], [72]), a hypothesis that it is not true for a remarkable number of exper-
imentally verified precursors. Moreover, they cannot exactly determine the mature
miRNA regions [50] or they are not providing any information of their accuracy for
predicting the exact starting position ([72], [61], [64]), an useful information for
experimental biologists. Finally, most of these computational tools estimate their
performance accuracy in terms of true positive rate alone (sensitivity), ignoring the
false positive rate ([50], [61], [64]). It is a matter of semantics as well as a great chal-
lenge to define a true negative example when it comes to mature miRNAs. However,
a major issue in such a classification task is not only to maximize the identification
of true positives but also to minimize the false positive rate. The above bibliography
review of methods used to predict the mature miRNA within a hairpin stem-loop

makes it clear that there is room for improvement.




Chapter 3

Methodology

In this chapter, we describe in detail the methodology and datasets used in order
to build a Naive Bayes classifier capabel of identifying mature miRNAs within a
precursor sequence. Firstly, we briefly review the theory of the naive bayes classifier
(section 3.1) and then we describe the parameters and hypotheses (section 3.2), the
dataset (section 3.3) and the features (section 3.4 and 3.5) used for training our

model.

3.1 The Naive Bayes Classifier
3.1.1 A first approach

The Naive Bayes classifier (NBC) is among the most popular classifiers used in the
machine learning community and has a wide range of applications. Naive Bayes is
a simple probabilistic classifier which is based on the application of the Bayesian
theorem (equation (3.1)) and approximates a joint distribution with the product of
the individual distributions. In simple terms, a NBC assumes that the presence (or
absence) of a particular feature of a class is unrelated to the presence (or absence)
of any other feature. For example, a fruit may be considered to be an apple if it is
red, round, and about 8 ¢m in diameter. Even though these features may depend
on the existence of the other features, a NBC considers all of them to independently
contribute to the probability that this fruit is an apple.

In spite of their naive design and over-simplified assumptions, naive Bayes clas-
sifiers often work much better in many complex real-world situations than one
might expect. Recently, careful analysis of the Bayesian classification problem has
shown that there are some theoretical reasons for the unexpected efficacy of naive

Bayes classifiers [75]. An advantage of the NBC is that it requires a relatively

13
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small amount of training data to estimate the parameters (means and variances
of the variables for each class) necessary for classification, since independence of
variables is assumed. This is very helpful for overcoming the curse of dimension-
ality, which requires scaling the data sets exponentially as the number of features
increases. Another important advantage is the fact that NBC provides a direct intu-
ition about the importance of the features used, especially in comparison to methods
such as artificial neural networks or support vector machines, which work more like
black boxes,that map features into a different, more complex space. Due to these
advantages, NBC is very commonly used as the first approach in many classification

problems.

3.1.2 The mathematical model

According to the Bayesian classifier, a new sample x, which is described by the fea-
ture vector x = (1,9, ..., z,) and whose class label is unknown, will be assigned
to the class w; among a finite set of possible classes C' = {w1,...,w.}. that mini-

mizes the overall risk based on its features x, according to the following formula:

a(x) = argmingea Z Aevi|w;) P(w;|x)
j=1

where:

o A={ai,...,a.} is a finite set of actions, where «; means selecting class w;,

o A(wj|wj) is the loss incurring for deciding w;, when the true state of nature is

w; and

e P(w;|x) is the posterior probability of w; being the true state of nature given

X.

P(wj|x) is the posterior probability of class membership, meaning the probability
that x belongs to w; and can be computed using the Bayes’ formula (see section 2.9

of [15]):
P(x|wj)P(w))

P(x)

where P(x|w;) is the state-conditional probability for x conditioned on w; being the

P(wjlx) = , (3.1)

true class, P(wj) is the prior probability or apriori probability that nature is in state
wj and P(x) =377, P(x|w;)P(w;) the evidence for x.

Advantages of
Naive Bayes
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The Naive Bayes classifier is based on the simplifying assumption that the input
features among samples of any given class are conditionally independent given the
class [47]. In other words, given the class of a sample, the probability of observing
the conjunction z1, 2, . .., x, is just the product of the probabilities for the individ-

ual features of this sample:

n
P(x|c;) = P(z1,22, ..., xnlcs) = [ [ Plxiley).
7

Although the assumption that the predictor variables are independent is not
always accurate, it does simplify the classification task dramatically, since it allows
the class conditional densities p(zj|w;) to be calculated separately for each variable
k for each class w;, meaning it reduces a multidimensional task to a number of
one-dimensional tasks. In effect, Naive Bayes reduces a high-dimensional density

estimation task to an one-dimensional kernel density estimation.

3.2 Owur model

In this thesis, we describe a method that uses a NBC for the identification of the
mature miRNA(s) within a miRNA precursor. More specific, the observations for
classification (i.e. the samples) are mature miRNA candidates that are produced
from a miRNA precursor sequence by sliding a window of a specified size along
the precursor. Each mature miRNA candidate is described by a set of features
x = (x1,x9,...,T,), that we consider to be independent, and it can be classified as
a mature miRNA (positive class - denoted wq), or as non-mature miRNA (negative
class - denoted w_1).

Ideally, we want to classify each sample to the class that minimizes the classi-
fication error, based on our training model. The simplest case is to consider that
all misclassification errors have the same cost, using the zero-one loss function.
Under these assumptions, the Bayes Decision Rule is converted to the following

equation:

Decide w1 if P(w1|x) > X - P(w_1]x);

otherwise decide w_;

for some threshold A € R (see section 2.3 of [15]). Since P(x) is only a normal-
ization factor, it can be omitted in order to minimize calculation time, leaving the

classification unchanged. Moreover, we assume that the prior probability is 50%




Positive dataset for
training

Negative dataset for
training
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for both classes, which prevents us from favoring a particular class. Under these

assumptions, the Bayes Decision Rule is given by the following simplified formula:

Decide w if P(x|w1) > X - P(x|w_1);

otherwise decide w_1

for some threshold )\ € R.

3.3 Datasets

In section 3.2 we mentioned that each mature candidate can be classified as a
mature miRNA (positive class), or as non-mature miRNA (negative class). This
assumption formulates the mature identification problem into a two-class problem.
As for any typical two-class classification problem, data samples from both classes
are needed in order to train the classifier.

The positive class is the main class of interest, i.e. the mature miRNAs. For the
training procedure, we use as positive data the precursors of experimentally verified
human and mouse microRNA downloaded from the miRBase Sequence Database
(version 10.1, [32], [20], [21]). The human dataset consists of 533 precursors which
produce 729 mature miRNAs, while the mouse dataset consists of 422 precursors
which produce 530 mature miRNAs. We consider precursor and not just mature
miRNA information, since some mature miRNAs come from more than one pre-
cursors [2]. Moreover, precursor information can provide more training examples
depending on type of features used (see section 3.4).

The definition of the mature miRNA is straight forward, but what is a non-
mature miRNA? In order to answer this question and to create the negative class

we consider two hypothesis:

1. As we already mentioned in section 3.2 the search area of the classifier will

be a miRNA precursor sequence.

2. It has been observed that until now miRNA precursors do not produce multiple
overlapping mature miRNAs from the same arm of the foldback precursor [2].

A hypothesis that holds in our positive dataset.

Based on the above constrains, we generate a set of negative examples from the
precursor sequences in the following way: for each true mature miRNA, we use a
same-size sliding window and select all possible “negative” matures which can be

created by sliding 1 base pair towards either direction from the mature, excluding
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any hairpin loops and the true mature. This procedure results in a very large neg-
ative set, where each true mature has a variable number of respective “negatives”,
depending on the length and number of precursors it comes from. In order to min-
imize computational time during the training procedure and at the same time have
a good representation of the precursor for the areas where true mature miRNAs do
not lay, we randomly select a subset of 10 negative examples for each true mature.

Apart from the data used to train the classifier, we consider a final, blind dataset
to evaluate the performance of our classifier. The dataset contains all new miRNA
precursors of human and mouse, that were published under version 11 and 12
of the miRBase Sequence Database ([32], [20], [21]). The dataset consists of 155
human precursors, which produce 160 mature miRNAs, and 45 mouse precursors,

which produce 48 mature miRNAs.

3.4 Features

The goal of this work is to produce a model that recognizes the mature miRNA(s)
within each precursor sequence, as Dicer does in the real cell. Until now, the only
information we share with Dicer is the sequence and the secondary structure of a
miRNA precursor. MicroRNA precursors have a unique secondary structure forming
irregular hairpin structures with various internal symmetric and non-symmetric
loops, bulges and hairpins. Figure 3.1 presents a typical example of the secondary
structure of a precursor miRNA. More specifically, it is the secondary structure of
the human precursor has-let-7a- 1, as it was produced by the RNAfold program [52].

One would expect that the areas on the edges of the mature miRNA would have
a common pattern that is recognized by Dicer. In order to evaluate whether this
hypothesis holds, we consider the information of the sequence and the secondary
structure of a precursor and we represent a mature miRNA as a sequence of po-
sitions. Each position is a single feature and contains sequence information (A,
C, U, G) and/or structural information (match or mismatch), derived from each
respective precursor(s). Notice that we simplify the secondary structure informa-
tion that is provided by a typical secondary structure program, such as RNAfold,
from hairpin, loops and bulges into match or mismatch, in order to represent the
secondary structure into the position level without any loss of information. For
example, figure 3.2 shows a feature found in position 2 ! of the mature miRNA

(indicated with red), which contains the information about its sequence (A) and its

!Position counting starts with zero.

The evaluation dataset

Position oriented features
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Symmetric
Loop

Bulge —>§ :

Non symmetric
Loop

Hairpin

Figure 3.1: The secondary structure of a miRNA precursor. A typical example
of the secondary structure of a precursor miRNA (the human precursor hsa-let-
7a-1, as it was produced by the RNAfold program [52]), contains hairpins, bulges,
symmetric and non-symmetric loops.

secondary structure (match).

The features that characterize the mature miRNA may lie in positions within the
mature miRNA, but may also lie within a flanking region of variable size that extends
symmetrically (or not) along both sides of the mature sample. It is possible that a
feature that lies outside the mature sample, could also lie outside the precursor,
depending on where the starting or ending position the mature miRNA lie within
the precursor. In this case, the feature gets a special value indicating the lack of
information. Figure 3.3 shows the areas where the position oriented features lie
as a precursor miRNA folds in its secondary structure. With red color is indicated
the mature miRNA, while green circles indicate the two flanking regions of specified
length (i.e. 5nt) around the mature. Notice that the number of position oriented
features depends on the length of the mature miRNA and the size of the flanking
regions. More specifically there are 2 * [N + mature length position oriented features

that describe a mature miRNA, where N is the size of the flanking region.

Figure 3.4 shows the distributions of two position oriented features as they are
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Position 2
before mature:
sequence: A
structure:match

Figure 3.2: An example of a position oriented feature. The feature lies in position
2 within the mature region, indicated with red, and contains information about its
sequence (A) and about its secondary structure (match).

calculated by the training data (see section 3.3). Both features are found in the
flanking region before the actual mature miRNA, position 8 and 9 respectively, and
have high divergence between their positive and negative data (see section 3.5 and
table A.1).

Apart from the position oriented features, we also consider four additional
features: the distances of the starting and ending position of a mature miRNA from
the closest hairpin and the distance of the starting and ending position of a mature
miRNA from the 5’ or 3’ precursor’s end, depending whether the mature lies on
the 5’ or 3’ stem respectively. Figure 3.5 shows the distance oriented features of
a mature miRNA (indicated with red) which is found on the 5’ stem of a miRNA
precursor. In a similar way one can define the distance oriented features for a
mature miRNA which is found on the 3’ stem of a precursor. It should be noticed
that these features have two distict distributions depending on stem the mature
miRNA laye within the precursor sequence.

An example distribution of such a feature can be seen in figure 3.6. The feature

shown is the starting position of a mature miRNA from the closest hairpin as is

Distance oriented
features
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Flanking region
before mature

mature

Flanking region
after mature

Figure 3.3: The regions of position oriented features. The regions where the
position oriented features lie as the miRNA precursor folds in its secondary structure
are the mature region, indicated with red, and the two flanking regions, indicated
with green, that extends symmetrically around the mature region.

calculated by the training data (see section 3.3). The true mature miRNAs (positive
data) tend to start in positions close to the hairpin, while the non-mature miRNAs
(negative data) tend to form the uniform distribution, because of the way they were

produced (see section 3.3).

3.5 Feature Selection

As we already mentioned in section 3.4 there are two types of features used to de-
scribe a mature miRNA in our system, the position oriented and the distance oriented
features. In order to select a set of features that contain discriminatory informa-
tion between true matures and our negative samples, we rank our features using
the symmetric Kullback-Leibler divergence metric (see below paragraph “Kullback-
Leibler divergence”) to measure the difference of the feature distributions for the
positive and negative data.

Specifically, we follow the procedure below:
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Position 8 before mature miRNA
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(a) Position 8 before the mature miRNA.

Position 9 before mature miRNA

0.5 T T T T T T T T
Il Positive
Il Negative
0.4r b
0.3r b

AM AL CM CL GM GL UM UL novalue

(b) Position 9 before the mature miRNA.
Figure 3.4: Example distributions of two position oriented features. The distri-

butions are calculated based on the training data.

1. For each feature, either distance oriented or position oriented, we estimate the

probability mass functions in both positive and negative data.

2. Using the symmetric K-L divergence, we estimate a score for each feature that

measures how different the probability mass functions are between the two
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end

@ (b)

Figure 3.5: The distance oriented features of a mature miRNA (indicated with
red) which is found on the 5’ stem of a precursor miRNA. (a) The distances of the
starting position of a mature miRNA from the 5 end of the precursor (Distance 1)
and from the closest hairpin (Distance 2). (b) The distances of the ending position of
a mature miRNA from the 5’ end of the precursor (Distance 3) and from the closest
hairpin (Distance 4).

classes.

3. We rank the features according to the K-L provided score. Large distances are

considered more informative.

4. We then train the classifier using the top K features. Each feature is incopo-
rated gradually into the classifier only if it helps increasing the performance
of the classifier based on some evaluation metric. We vary both N, the size of
flanking region, and K, the number of features used, until we find the optimal

classifier.

The features selection method used in our model is a typical variable ranking
method. Variable ranking method is a filter method, which is a preprocessing step,
independent of the choice of the predictor. Still, under certain independence or
orthogonality assumptions, it may be optimal with respect to a given predictor.
For instance, using Fisher’s criterion to rank variables in a classification problem
where the covariance matrix is diagonal is optimum for Fisher’s linear discriminant
classifier [15]. Even when variable ranking is not optimal, it may be preferable to

other variable subset selection methods because of its computational and statistical
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(a) Distribution for 5’ mature miRNAs.
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(b) Distribution for 3’ mature miRNAs.

Figure 3.6: An example distribution of a distance oriented feature. The feature
is the starting position of a mature miRNA from the closest hairpin as is calculated
by the training data.

scalability: Computationally, it is efficient since it requires only the computation of
n scores and sorting the scores; Statistically, it is robust against overfitting because

it introduces bias but it may have considerably less variance [25].
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Finally, the Kullback-Leibler divergence metric (K-L divergence) is a measure
of the difference between two probability distributions [37]. For Probability Mass
Functions (PMFs) P and (@ of a discrete random variable, the K-L divergence of ()

from P is defined as:
P(i)

Q(i)

Dir(P|Q) = P(i)log,
i
Two fundamental properties of Dy (P|Q) are:
e non-negativity: Dy (P|Q) > 0 with equality if and only if P = Q.
o asymmetry: Di1(P|Q) # Dk r(Q|P).

Unfortunately, the property of asymmetry is the reason why K-L divergence is not
a true distance metric. To overcome this problem we used the symmetric and

nonnegative Kullback-Leibler divergence [30], which is defined as:

S (Din(PlQ) + D (QIIP))

and is commonly used in classification problems.




Chapter 4

Results

In this chapter, we discuss the construction and fine tuning procedures for the Naive
Bayes Classifier that was described in detail in chapter 3 (see sections 4.1, 4.2 and
4.3) and compare its performance with that of two existing tools the BayesMiRNAfind
[72] and ProMiR [50] (see section 4.4).

4.1 Training the Naive Bayes Classifier

According to the hypotheses reported in section 3.2, there are a number of param-
eters that need to be tuned, in order to get the optimum Naive Bayes classifier. The
main parameters are the size of the flanking regions, N, the number of features, K,
used in the classifier and the type of information for the position oriented features.
A typical method for tuning the model’s parameters is the m-fold cross-validation

procedure [34], where the data are split into m subsets and a portion of them (%)

are used for training, while the remaining (%) data are used for validation. This
is repeated iteratively until all data are used for both training and validation. In this
case, we use a 10-fold cross validation procedure and in order to ensure a realistic
estimation of the classifier’s performance, the validation sets consist of true miRNA
precursors, instead of the mature miRNAs alone. It should be noted that the miRNA
precursors used in the validation set correspond to the mature miRNAs that were
left out from the training sets during cross-validation. Classification performance
on the validation set is estimated using a sliding window of fixed size, whereby all
possible mature candidates generated by sliding 1 base pair in both stem arms of
the precursor apart from the hairpin loop(s), are assigned to one of the two classes.
It is important to note that classification performance is estimated based on exact

match of the starting position of the predicted compared to the real mature miRNA.

25
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Even 1nt deviations are considered as negative examples. Based on the above con-
vention, another parameter is introduced into the model, namely the size of the

sliding window, W.

4.1.1 Position oriented features selection

Our first goal is to identify what type of position oriented features are more useful for
the classification task at hand. In section 3.4, three categories of position oriented

features were presented, depending on the type of information they contain:
1. Sequence Type, containing only sequence information (A, C, U, G).

2. Structure Type, containing only information of the secondary structure (match

or mismatch).

3. Combined Type, containing information of both sequence and secondary struc-

ture.

The discriminatory power of each feature category is estimated via assessing the
classification performance of Naive Bayes classifiers over 10-fold cross validation
procedure. As mentioned above, for each Naive Bayes classifier three parameters
need to be tuned: a) the size of the flanking region, N, which is assumed to lie
within N € {0,5,7,10,12}, b) the size of the scanning window, W, which is ssumed
to be W = 22nt and ¢) the number of position oriented features used into the clas-
sifier, K, which is assumed to lie within K € {1,2,..., N + W}, since they can be
located either within the mature miRNA, or inside the flanking regions around it.
Moreover, the classification performance is based on Matthew’s correlation coeffi-
cient [4], a measure of the quality of binary classifications. It is generally regarded
as a balanced measure which can be used even if the classes are unbalanced. It
returns a value between —1 and 41, where +1 represents a perfect prediction, O an
average random prediction and —1 an inverse prediction.

Tables 4.1, 4.2 and 4.3 show the top scoring classifiers, based on Matthews
Correlation Coefficient (MCC) calculated for threshold A = 1 (see section 3.2), for
the three categories of input features, each utilizing location-specific information
about the sequence, the structure and both the sequence and structure of the
training examples respectively. Each table shows the sensitivity, specificity and
Matthews Correlation Coefficient (MCC) [4] achieved with different numbers of such

features (position oriented) and with different sizes of flanking regions around the
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Table 4.1: The Sequence-Based Naive Bayes Classifiers trained with emphposition
oriented features containing only sequence information.

Classifier’s Description H Sensitivity | Specificity | MCC
Combina‘Fion of‘12 Features, 67.10% 55.10% 0.0850
Ont flanking region

Combinatcion of'16 Features, 76.04% 53.34% 0.1074
5nt flanking region

Combina‘Fion of‘31 Features, 75 96% 53.20% 0.1071
7nt flanking region

Combinati.on of 1'9 Features, 79.15% 47.01% 0.0960
10nt flanking region

CombinatiF)n of :‘?5 Features, 24.30% 51.33% 0.0945
12nt flanking region

Table 4.2: The Structure-Based Naive Bayes Classifiers trained with position ori-
ented features containing only structure information.

Classifier’s Description H Sensitivity | Specificity | MCC
Combinatcion of' 10 Features, 65.70% 54.30% 0.0730
Ont flanking region

Combina‘Fion of ‘26 Features, 76.34% 52.64% 0.1056
5nt flanking region

Combinatcion of '23 Features, 77 85% 54.99% 0.1186
7nt flanking region

CombinatiF)n of E‘TQ Features, 81.01% 56.63% 0.1373
10nt flanking region

Combinati9n of ?8 Features, 79.89% 55.51% 0.1300
12nt flanking region

mature miRNA. Note that the positions along the precursor which served as input

features were selected based on the K-L divergence metric (see section 3.5).

We found that as the size of the flanking region increased, the sensitivity of the
classifiers tended to improve, while the specificity remained relatively unaffected,
independently of the type of features used. This improvement seemed to reach a
maximum for a flanking region of about 10nt. For classifiers with flanking regions
of 12nt utilizing either sequence or structure information (Tables 4.1 and 4.2 re-

spectively), the extra features did not further improve the accuracy, suggesting that
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Table 4.3: The Combined Naive Bayes Classifiers trained with position oriented
features containing both sequence and structure information.

Classifier’s Description H Sensitivity | Specificity | MCC
Combinattion of.20 Features, 68.50% 62.50% 0.1250
Ont flanking region

Combinattion of.29 Features, 71.32% 65.34% 0.1394
5nt flanking region

Combinattion of .36 Features, 74.26% 66.46% 0.1562
7nt flanking region

Combinatif)n of 4%2 Features, 76.50% 65.61% 0.1606
10nt flanking region

Combinati‘on of E‘TQ Features, 77 81% 64.14% 0.1590
12nt flanking region

they probably add more noise than useful information.

Moreover, the classifiers utilizing features with combined information for both
sequence and structure achieved an overall better performance -in terms of im-
proved specificity and MCC- than the ones using sequence or structure information
alone. Note that a high specificity score is particularly important in this task, since
the number of negative examples is much larger than the number of positive ones,
suggesting that the position oriented features that utilize both sequence and sec-
ondary structure information have higher discriminatory power that the other two

categories.

4.1.2 Tuning the parameters of the model

As we already mentioned in order to get the optimum Naive Bayes classifier, a
number of parameters need to be tuned. In the previous subsection (4.1.1), we
examined one of the parameters, the discriminatory power of different types of
position oriented features, and showed that features which combined information
of both sequence and secondary structure are more powerful. In this subsection
we examine the rest of the parameters and present the best Naive Bayes classifier,
based on our hypotheses (see section 3.2).

We trained a number of Naive Bayes classifiers using a 10-fold cross valida-
tion procedure with different parameters values. The classification performance
was assessed using Area Under the Curve (AUC) of the average receiver operating

characteristic (ROC) curve calculated using the threshold averaging algorithm in-
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Figure 4.1: The length distribution of experimentally verified human and mouse
mature miRNAs from the miRBase Sequence Database (version 10.1, [32], [20],
[21]).

troduced by Fawcett [18]. We use AUC as a classification performance instead of
the MCC, which was used in the previous section (4.1.1), because it is not limited
by a specific A threshold and is insensitive to both skewed class distributions and
unequal classification error costs. Finally, the AUC of a classifier is equivalent to the
probability that the classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative instance [18], which is more intuitive than the
MCC.

A set of different values for the parameters in question were selected based on
the results of the previous set of experiments (subsection 4.1.1). Regarding the
size of the flanking region, we tested values within the N € {0,3,5,7,9} set, since
position oriented features derived from langer flanking regions didn’t improve the
classification accuracy. Regarding the scanning window, W, values {18, 20, 22, 24},
were investigated. Note that 18 is the size of the smallest mature miRNA in our
training data, and 22 is the average size (see figure 4.1). Regarding the number of
position oriented features used to train the classifier, K, we followed an incremental
approach where K € {1,2,...,N + W}. Features were added as described in 3.5

until no more improvement could be achieved. Four distance oriented features

Parameters’ Values
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Table 4.4: The AUC of the average ROC curve, over the 10-fold cross validation,
of the naive bayes classifiers with distance oriented features for every scanning
window value. In the array below with HS and HE are representing the distances
of the starting and ending position of the mature from the hairpin respectively, and
with ES and EE the distances of starting and ending position of the mature miRNA
from the ends of the precursor respectively.

Distance ori- || Window Window Window Window
ented Features 18nt 20nt 22nt 24nt
HS 0.8181 0.8155 0.8128 0.8147
HS-HE 0.7794 0.7914 0.8099 0.8100
HS-HE-ES 0.7621 0.7803 0.7787 0.7866
HS-HE-ES-EE 0.7587 0.7808 0.7875 0.7839

denoting the distance of the starting and ending position of the mature from the
hairpin and the precursor, respectevely, were also examined.

As we mentioned in section 3.5, we are using a variable ranking method to
select the order of introducing our features into the classifier. The features with the
highest Kullback-Leibler divergence, the metric for ranking the features, were the
distance oriented features (see table A.1). Tables 4.4 shows the performance of the
Naive Bayes classifiers that were trained using distance oriented features alone for
every value of the scanning window W. We found that the most powerful feature
based on Kullback-Leibler divergence (see table A.1), is the distance of the starting
position of a mature miRNA from the closest hairpin (HS). Using this feature alone
results a classification performance of approximately 0.81 AUC in the 10-fold cross
validation procedure. Adding the rest of the distance oriented features unfortunately
decreased the AUC below 0.80, suggesting that they probably add more noise than
useful information.

Thus, in the next set of experiments we consider the combination of HS with
position oriented features containing both sequence and secondary structure infor-
mation. As shown (see tables A.2, A.3, A.4, A.5 and A.6) adding position oriented
features into the classifier futher improves the classification performance . Position
oriented features were inserted according to the Kullback-Leibler score, as long as
their respective positions lied within the mature or flanking regions of the classifier.
Table 4.5 shows the best Naive Bayes classifiers using HS and position oriented
features for every combination of flanking region and scanning window. For each

classifier the table presents its performance in terms of AUC over the average ROC
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curve and the number of position oriented features used.

The classifier with the highest performance on the cross-validation task was
the one trained with 37 position orieted features and the distance of the starting
position of the mature miRNA from the hairpin (HS feature). The optimal flanking
region was N = 9nt and the optimal scanning window W = 22nt. The highest
performance achieved was AUC = (.88 over the 10-fold cross validation, although
the rest of the classifiers in table 4.5 have similar classification performances. To
get a better estimate of the classifier’s performance we tested our model against
a blind dataset (see paragraph “The evaluation dataset” section 3.3). Figure 4.2
shows the ROC curves of the best classifier both in the cross validation (green line)
and the evaluation dataset (black line). For each point in the ROC curve of the
cross validation procedure (green line) we also provide the standard deviation for
both false and true positive rate (red and blue line respectively). The AUC in the
average ROC curve is ~ 0.88, while in the blind evaluation dataset is ~ 0.80. Even

though the AUC decreases in the evaluation dataset, it remains sufficiently high.

4.2 Finding the best mature candidate

The purpose of this thesis is to create a model that would predict the mature
miRNA(s) that is(are) produced by a precursor miRNA. The Naive Bayes classifiers
will classify the candidates, that are created by shifting a scanning window of a
specified size 1nt at a time along the precursor stems, into mature or non-mature.
Based on the classification performance even our best classifier (AUC' = 0.88 over
the cross validation) will classify a number of candidates as mature for each pre-
cursor depending on a selected score threshold A.

For example table 4.6 shows the mature candidates of the precursor hsa-mir-
576 using score threshold A = 1. We select a score threshold A = 1, which based
on the average ROC curve of the cross validation (see figure 4.2), has an average
Sensitivity of 86.95%=+0.0348 and an average Specificity of 73.27%=0.0120. For each
mature candidate, which is represented by its starting position within the precursor
(column “Position”), the table shows the Bayesian score (column “Bayesian score”)
and the distance from the closest true mature miRNA of the precursor (column
“Distance from Truth”). The candidates per stem are sorted based on the Bayesian
score and it should be noted that consecutive candidate positions have close ranking
positions. The precursor hsa-mir-576 actually produces two mature miRNAs, one

in position 15 on the 5’ stem and one in position 54 on 3’ the stem, but our best

The best Naive Bayes
classifier
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Table 4.5: The AUC of the average ROC curve, over the 10-fold cross validation, of the best naive bayes classifiers for every

combination of flanking region and scanning window.

Flanking Region H

Window 18nt

Window 20nt

Window 22nt

Window 24nt

ont 17 Position Features | 17 Position Features | 18 Position Features | 18 Position Features
0.8629 0.8615 0.8621 0.8624

3nt 19 Position Features | 20 Position Features | 23 Position Features | 23 Position Features
0.8671 0.8658 0.8675 0.8661

5nt 19 Position Features | 20 Position Features | 27 Position Features | 21 Position Features
0.8597 0.8614 0.8662 0.8642

7nt 5 Position Features | 24 Position Features | 31 Position Features | 25 Position Features
0.8592 0.8630 0.8716 0.8696

ont 16 Position Features | 34 Position Features | 37 Position Features | 35 Position Features
0.8599 0.8673 0.8771 0.8704
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Figure 4.2: The ROC curve of the Best Naive Bayes Classifier. The green line
represents the average ROC curve over the 10-fold cross validation, with blue the
standard deviation of the true positive rate (TPR) and with red the standard deviation
of the false positive rate (FPR), while the black line represents the ROC curve over
the final blind dataset. The average AUC over the cross validation is 0.8771, while
the AUC of the blind, test dataset is 0.791.

classifier provides 5 mature candidates on 5’ stem and 13 mature candidates on 3’

stem using score threshold A = 1, respectively.

As we already mentioned it is known that experimentally miRNA precursors do
not produce multiple overlapping mature miRNAs from the same arm of the fold-
back precursor [2], and providing more than one position per stem as candidates
may not be so useful for a biologist. In order to overcome this problem, we next try to
provide one mature candidate per stem by using our best Naive Bayes classifier as a
ranker and combining the highest scoring candidates to produce one computational
candidate/truth. The evaluation of the methods of computational truth will be in
terms of distance from the true mature miRNAs and our goal is to find the candidate
with the smallest possible distance provided with the highest confidence. Note that
distance in this case corresponds to the difference of the start position between the

true mature and the predicted candidates.
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Table 4.6: Mature candidates of precursor hsa-mir-576 from our best naive bayes
classifier with score threshold A = 1. The candidates are sorted by Bayesian score
per stem and for each of them the table shows its Bayesian score and the distance
from the closest true mature miRNA.

5°’Stem - True mature:15 3’Stem - True mature:54
Position Bayesian | Distance Position Bayesian | Distance
Score from Truth Score from Truth
16 24.61 1 53 145.07 -1
15 17.68 0 52 96.22 -2
14 12.01 -1 54 95.30 0
17 8.24 2 51 46.66 -3
18 5.68 3 50 25.80 -4
60 11.91 6
63 11.72 9
65 11.54 11
55 7.54 1
67 5.18 13
66 5.13 12
68 2.30 14
56 1.32 2

4.2.1 Finding the computational truth

The first idea is to provide the top scorer per stem as the computational truth with
a score threshold A\ = 1. Figure 4.3 shows the average distance distribution of
the top scorers from the true mature miRNAs for the stems that produce mature
miRNAs over the 10-fold cross validation. The average mean of the distribution
is 0.2337nt, while the average standard deviation is 6.586n¢. It should be noted
that the 86.88% of the computational truth was +6nt away from truth. We also
examined as computational truth the middle point of the positions’ space defined by
n top scorers and the mean value of n top scorers, where n € {2,...,6} (see tables
A.7 and A.8). The best results for both computational solutions were obtained
for n = 4. Figures 4.4 and 4.5 show the average distance distributions of the
computational truth from the true mature miRNAs, only for the stems that produce
mature miRNAs, over the 10-fold cross validation for n = 4. The computational
truth in figure 4.4 is the middle point of 4 top scorers, while in figure 4.5 is the mean
value of 4 top scorers, using in both cases a score threshold A\ = 1. The average

mean of the average distance distribution for the middle point of the 4 top scorers is
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Figure 4.3: The average distance distribution over the 10-fold cross validation (left)
and the percent for each distance away from the truth (right), when the computa-
tional truth is the top scorer using score threshold A = 1.
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Figure 4.4: The average distance distribution over the 10-fold cross validation (left)
and the percent for each distance away from the truth (right), when the computa-
tional truth is the middle point of the range defined by the 4 top scorers using score
threshold A = 1.

0.3694nt with average standard deviation 5.5208nt, while the average mean for the
mean value of 4 top scorers is 0.8298nt with average standard deviation 5.4579nt.
Finally, the 88.25% of the middle point computational candidates and the 89.34%

of the mean value computational candidates were within +6nt¢ distance from truth.

The main problem with this approach is that even for precursors which produce, miRNA duplex

a single mature miRNA, our model will also provide a mature candidate for the
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Figure 4.5: The average distance distribution over the 10-fold cross validation (left)
and the percent for each distance away from the truth (right), when the computa-
tional truth is the mean value of the 4 top scorers using score threshold A = 1.

opposite stem. For example, precursor hsa-mir-140 produces only one mature
miRNA in position 22 on 5’stem, but our model proposes two mature candidates one
in position 23 on 5’stem and one in position 61 on 3’stem, if we use as computational
truth the top scorer per stem. The second candidate appears because approximately
half of our training data produce two mature miRNAs and the model learns to
identify candidates in both stems. The first candidate in this specific example is only
1nt away from truth, while the second one is 39nt away. The second position based
on the known information is a false positive, but it may be biologically significant if
the two candidates correspond to the miRNA-miRNA* duplex (see section 2.1). Our
next goal is thus to provide instead of two mature candidates, one double stranded
candidate which is more likely to correspond to the miRNA-miRNA* duplex. Based
on the observation that the miRNA-miRNA* duplex has approximately 2nt overhang
in the 3’ end, our model will first identify the top scoring mature over both stem and
will then provide its miRNA* as the miRNA from the opposite stem which starts 2nt

away from the matching position of the mature candidate’s ending position.

Figure 4.6 shows the average distance distribution over the cross validation
assuming as truth the top scorer of the precursor and its miRNA*. The distance
is measured from the true mature, irrespectively of whether it corresponds to the
predected miRNA or its miRNA* candidate. If the precursor produces two matures,
both distances are calculated. The distribution of the miRNA-miRNA* duplex of the

top scorer has average mean 0.0505nt and average standard deviation 5.8127nt over
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Figure 4.6: The average distance distribution o (left) and the percent per distance
away from the truth (right) of the top scorer miRNA-miRNA* duplex over the 10-fold
cross validation.

the cross validation. Moreover, the 87.83% of the candidates are +6nt away from
the truth.

Overall, the best strategies for calculating the computational truth are the top
scorer per stem if we have the prior knowledge which stem produces the mature

miRNA, otherwise the top scorer per precursor and its duplex.

4.2.2 Evaluate best strategies in test dataset

In this subsection we evaluate the performance of the best strategies of finding the
computational truth over a blind test dataset (see section 3.3). As we methioned
above the best strategies for calculating the computational truth are the top scorer
per stem if we have the prior knowledge which stem produces the mature miRNA,
otherwise the top scorer per precursor and its duplex. Figure 4.7 shows the dis-
tance distributions the two best strategies of calculating the computational truth as
mentioned above. The 76.37% of the top scorers candidates per stem were found in
+6nt away from the true mature miRNA, while the 78.74% of the top scorers with
their duplexes as candidates lay within the same distance, over the blind dataset.
Both strategies keep their percent of candidates for the distance of £6nt in high
levels.

We also evaluate their performance of these strategies by splitting the test

dataset into human and mouse set, in order to evaluate if there is a difference
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(b) Distance distribution of top scorer and its duplex.

Figure 4.7: The distance distributions (left) and the percent per distance away from
the truth (right) of the computational truth of our Best Naive Bayes classifier over
the test dataset, for the most accurate strategies, top scorer per stem (see figure
4.7(a)), and top scorer per precursor and its duplex (see figure 4.7(b)).
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that is drawn from the species. Figure 4.8 shows the distance distributions over
the human and mouse test dataset, when the computational truth is the top scorer
per stem. In both organisms the candidates that lay within +6nt¢ away from the
true mature miRNA have high percent, the 76.98% for the human dataset (see figure
4.8(a)) and the 74.42% for the mouse dataset (see figure 4.8(b)). Although the two
distributions seems similar, the Kolmogorov-Smirnov Test shaw that the datasets
come from different distributions (p-value ~ 0.0352). On the other hand, figure 4.9
show the distance distributions over the human and mouse dataset, when the com-
putational truth is the top scorer per precursor and its duplex. In both organisms
the candidates that lay within +6nt away from the true mature miRNA have high
percent, the 81.13% for the human dataset (see figure 4.9(a)) and the 70.83% for the
mouse dataset (see figure 4.9(b)). The Kolmogorov-Smirnov Test in this cases shaw
that the datasets come from the same distribution (p-value ~ 0.3310). This evalua-
tion shows that the top scorer per precursor with its duplex is more strong strategy

for finding the optimal mature candidate within a miRNA precursor sequence.

4.3 Problem Complexity

In order to evaluate the generalization of our best classifier we compare with the
simplest classifier we trained, based on the distance distributions of the best two
strategies of computational truth, the top scorer per stem and the top scorer per
precursor with its duplex. Our best classifier uses 37 position oriented features
and the distance of the starting position of the mature miRNA from the hairpin and
achieves AUC = (.88 over the 10-fold cross validation, while our simplest classifier
uses one single feature, the distance of the starting position of the mature miRNA
from the hairpin, also named as HS classifier, and achieves AUC' = (.81 over the
10-fold cross validation.

Figure 4.10 shows the average distance distributions of the HS classifier if the
compuational truth is the top scorer per stem (see figure 4.10(a)) or the top scorer
per precursor and its duplex (see figure 4.10(b)). If we consider as computational
truth the top scorer per stem then the 47.47% of the computational truth were +6nt
away from the true mature for HS classifier (see figure 4.10(a)), while 86.88% of the
computational truth were within the same distance for out best classifier (see figure
4.3). We also evaluate the statistical difference between these two distributions us-
ing the Kolmogorov-Smirnov Test, which confirms that the two datasets come from

different distributions (p-value ~ 0.0000223). If we consider as computational truth
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Figure 4.8: The distance distributions (left) and the percent per distance away from
the truth (right) of the top scorer per stem over the test dataset as it is split into
human and mouse datasets.

the top scorer per precursor and it duplex then the 69.53% of the computational
truth were +6nt away from the true mature for HS classifier (see figure 4.10(b)),
while the 87.83% of the computational truth were within the same distance for our
best classifier (see figure 4.6). We also evaluate the statistical difference between
these two distributions using the Kolmogorov-Smirnov Test, which confirms that
the two datasets come from different distributions (p-value =~ 0.0097).

These results indicate that the complexity of the problem cannot be solved using

a single feature, such as the distance of the starting position of the mature miRNA
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Figure 4.9: The distance distributions (left) and the percent per distance away from
the truth (right) of the top scorer per precursor and its duplex over the test dataset
as it is split into human and mouse datasets.

from the hairpin, even though it provides quite strong classification performance,

requiring even more complex features for solving the problem.

4.4 Comparison with other methods

In section 2.4 we presented a number of studies that use computational methods
to identify the mature miRNA from a miRNA precursor. We were able to compare

the performance of our model with just two of these studies, due to source code and
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Figure 4.10: The distance distributions (left) and the percent per distance away
from the truth (right) of the computational truth of the HS Naive Bayes classifier
over the 10-fold cross validation.

data unavailability for the rest of the methods. We used the 200 miRNA precursors
in our blind test set as input to both tools and estimate performaces only on those
precursors that were computationally predicted to contain a mature miRNA by each
tool respectively. All precursors in our test set were contained in later versions of

miRBase and were not used to train any of these tools, neither ours.

The first method is the ProMiR by Nam et al. [50], who proposed a method based
on paired Hidden Markov Models (HMM) for miRNA precursor identification. The
comparison with this tool was done using 178 precursors out of the 200 precursors

of our test dataset(see paragraph “The evaluation dataset” in section 3.3), those
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precursors that ProMiR identified as true precursors. ProMiR predicted the wrong
stem for 78/178 of these precursors, while our model predicted the wrong stem
for 94/178 precursors, if we consider as computational truth the top scorer of the
Bayesian classifier. For the rest of the precursors, those that the computational
truth was in the same stem as the true mature, we computed the distance distri-
butions for both methods (see figure 4.11). As shown in figure 4.11(a) 55% of the
computational truth were +6nt away from the true mature for ProMiR (see figure
4.11(a)), while 79.52% of our top scorers were within the same distance, respectively
(see figure 4.11(b)). We also evaluate the statistical difference between the two dis-
tributions shown in figure 4.11 using the Kolmogorov-Smirnov Test, which confirms
that the two datasets come from different distributions (p-value ~ 0.00074).

The second method is called BayesMiRNAfind by Yousef et al.[72], a web server
which uses a Naive Bayes Classifier to predict miRNA precursors and incorporates
mature miRNA prediction to increase its performance. The comparison with this
tool was done using 101 precursors out of the 200 precursors of our test dataset(see
paragraph “The evaluation dataset” in section 3.3), those precursors that BayesMiR-
NAfind predicted as true precursors. The BayesMiRNAfind predicted the wrong
stem for 45/101 precursors, while our model predicted the wrong stem for 53/101
precursors, if we consider as the computational truth the top scorer of the Bayesian
classifier. For the rest of the precursors, those that the computational truth was in
the same stem as the true mature, we generated the distance distributions for both
methods (see figure 4.12). As shown in figure 4.12 44.64% of the computational
truth were +6nt away from the true mature for the BayesMiRNAfind (see figure
4.12(a)), while 85.42% of our top scorers were within the same distance (see figure
4.12(b)). We also evaluate the statistical difference between the two distributions
shown in figure 4.12 using the Kolmogorov-Smirnov Test, which confirms that the
two datasets come from different distributions (p-value =~ 0.0013).

The confidence our model achieves for +6nt away from the truth is approxi-
mately double in comparison to the confidence achieved by BayesMiRNAfind for the
same distance, while the confidence achieved by our model is ~ 30% more than the
confidence achieved by ProMiR for the same distance. Overall, our model achieves
higher confidence for the same distance from the truth than the confidences of the

other methods on the independent test datasets.

BayesMiRNAfind
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Distance Distribution of ProMiR
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(b) Distance Distribution of our model.

Figure 4.11: The distance distributions (left) and the percent per distance away from
the truth (right) of both ProMiR and our model from the predictions that were within
the same stem as the true mature. In our model we consider as computational truth
the top scorer of the Bayesian model.
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Distance Distribution of BayesMiRNAfind
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Figure 4.12: The distance distributions (left) and the percent per distance away
from the truth (right) of both BayesMiRNAfind and our model from the predictions
that were within the same stem as the true mature. In our model we consider as
computational truth the top scorer of the Bayesian model.
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Chapter 5

Conclusion

5.1 Discussion

In this thesis we examined the problem of mature miRNA prediction within mam-
malian miRNA precursors. We proposed a Naive Bayes classifier (NBC) that uses
sequence and structure characteristics of the miRNA precursor in order to provide
the position that is most likely to represent the start of each mature miRNAs that
can be produced by the precursor. We select the NBC because it requires a rela-
tively small amount of training data to estimate its parameters, it provides a direct
intuition about the importance of the features used and it has high performance in
many complex real-world problems, despite of its simplified assumptions.

The biological features used in the NBC are a number of position oriented fea-
tures, containing both sequential and structural information of the specific position
on the miRNA precursor, and the distance of the starting position of the mature
miRNA from the hairpin. We selected to use position oriented features in order to
examine the hypothesis that Dicer recognizes a common pattern which appears on
the edges of the mature miRNAs. This hypothesis is confirmed, since the position
oriented features we incorporate into our model tend to lay either in the flanking
regions around the mature miRNA or in positions within the mature, but which are
close to its ends. The distance of the starting position of the mature miRNA showed
that matures tends to be close to the hairpin, suggesting that they are probably
found in positions that do not depend on the actual size of the precursor.

We used experimentally verified human and mouse miRNAs to train and evalu-
ate the performance of a Naive Bayes classifier in terms of AUC and distance from
the truth. Unlike the method presented here, most of the computational tools that

can be used to predict the functional part of the miRNA precursor estimate their
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performance accuracy in terms of true positive rate alone, ignoring the false posi-
tive rate ([50], [61], [64]). It is a matter of semantics as well as a great challenge to
define a true negative example when it comes to mature miRNAs. However, a major
issue in such a classification task is not only to maximize the identification of true
positives but also to minimize the false positive rate. In an effort to combine both of
these criteria, our method achieves an average AUC ~ (.88 and ~ 88% of the top
scorer duplexes, on average, were =6nt away from the truth.

In conclusion, our findings suggest that position specific sequence and structure
information and the distance of the starting position from the hairpin combined
with a simple Bayes classifier achieve a good performance on the challenging task

of mature miRNA identification.

5.2 Future Work

There are a number of open issues regarding the mature miRNA identification prob-
lem. First of all, as a typical pattern recognition problem there are a number of
parameters that we didn’t examine in this thesis. For example, one might consider
different error cost per class with the Naive Bayes classifier. Apart from the NBC
one could also use a stronger classifier such as support vector machines (SVM) or
artificial neural networks. With these classifiers it is easy to include both different
error costs per class and different weights per feature, which could provide more
accurate results.

On the other hand, one could also use as training input the miRNA-miRNA*
duplex instead of the mature alone. In other words, one will convert the mature
miRNA identification problem to the miRNA-miRNA* duplex identification, which
could be what Dicer recognizes after all. The only problem with this approach is
the need of a more accurate definition of the miRNA-miRNA* duplex by biologists,

in order to get more precise results.
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Supplementary Data

Table A.1: The features sorted based on Kullback-Leibler

divergence.

Feature Description

Kullback-Leibler score

Distance of Starting Position from Hairpin (3’stem)
Distance of Ending Position from Hairpin (3’stem)
Distance of Starting Position from Hairpin (5’stem)
Distance of Ending Position from Hairpin (5’stem)
Distance of Ending Position from End (3’stem)
Distance of Starting Position from End (3’stem)
Distance of Ending Position from End (5’stem)
Distance of Starting Position from End (5’stem)
Position 8 in flanking region before mature
Position 9 in flanking region before mature
Position 7 in flanking region before mature
Position 7 in flanking region after mature

Position 16 in mature

Position 8 in flanking region after mature

Position O in mature

Position 7 in mature

Position 9 in flanking region after mature

Position 6 in flanking region after mature

Position 15 in mature

14.20
10.98
9.20
9.12
2.50
2.50
2.48
2.48
0.2126
0.2026
0.1725
0.1715
0.1707
0.1581
0.1549
0.1420
0.1358
0.1312
0.1260

Continued on next page
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Table A.1 - continued from previous page

Feature Description

Kullback-Leibler score

Position 13 in mature

Position 17 in mature

Position 3 in mature

Position 6 in flanking region before mature
Position 18 in mature

Position 6 in mature

Position 5 in flanking region after mature
Position 12 in mature

Position 14 in mature

Position 4 in mature

Position 3 in flanking region before mature
Position 5 in mature

Position 4 in flanking region before mature
Position 2 in mature

Position 11 in mature

Position 8 in mature

Position 20 in mature

Position 4 in flanking region after mature
Position 1 in mature

Position 5 in flanking region before mature
Position 1 in flanking region before mature
Position 1 in flanking region after mature
Position 23 in mature

Position 25 in mature

Position 2 in flanking region before mature
Position 9 in mature

Position 22 in mature

Position 2 in flanking region after mature
Position 21 in mature

Position 19 in mature

Position 10 in mature

Position 24 in mature

0.1220
0.1181
0.1156
0.1129
0.1129
0.1067
0.1008
0.1004
0.0931
0.0900
0.0830
0.0805
0.0793
0.0749
0.0733
0.0729
0.0728
0.0690
0.0687
0.0613
0.0554
0.0516
0.0495
0.0476
0.0458
0.0450
0.0431
0.0427
0.0407
0.0396
0.0351
0.0299

Continued on next page




Table A.1 - continued from previous page

‘ Feature Description

‘ Kullback-Leibler score ‘

‘ Position 3 in flanking region after mature

0.0286

Table A.2: The AUC of the average ROC curve, over the 10-

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region Ont.

Number of

Position

Oriented Window 18 | Window 20 | Window 22 | Window 24

Features
1 0.8397 0.8374 0.8366 0.8371
2 0.8455 0.8428 0.842 0.8433
3 0.8594 0.8576 0.8574 0.8577
4 0.8578 0.856 0.8556 0.8566
5 0.8578 0.8556 0.8553 0.8567
6 0.8572 0.8556 0.8551 0.8562
7 0.8589 0.8573 0.857 0.857
8 0.8608 0.8595 0.8601 0.8601
9 0.8606 0.8584 0.8587 0.8591
10 0.8589 0.8587 0.8582 0.8587
11 0.859 0.8567 0.8572 0.8578
12 0.8582 0.8571 0.8575 0.858
13 0.858 0.8574 0.8572 0.8578
14 0.8593 0.8565 0.8577 0.8581
15 0.8599 0.8581 0.8568 0.8571
16 0.8628 0.8582 0.8586 0.8589
17 0.8629 0.8615 0.8586 0.8598
18 0.8629 0.8615 0.8621 0.8624
19 - 0.8604 0.8615 0.8618
20 - 0.8605 0.8514 0.8617
21 - - 0.8603 0.8606

Continued on next page
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Table A.2 - continued from previous page

Number of

Position
Window 18 Window 20 | Window 22 | Window 24
Oriented
Features
22 - - 0.8601 0.8595
23 - - - 0.8355
24 - - - 0.8337

Table A.3: The AUC of the average ROC curve, over the 10-

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 3nt.

Number of

Position

Oriented Window 18 | Window 20 | Window 22 | Window 24

Features
1 0.8413 0.839 0.8379 0.8386
2 0.8572 0.8557 0.8549 0.8556
3 0.8588 0.8572 0.8571 0.8577
4 0.8578 0.8563 0.8561 0.8571
5 0.8567 0.8554 0.8551 0.8565
6 0.857 0.8554 0.855 0.8561
7 0.8578 0.8536 0.854 0.8542
8 0.8576 0.8554 0.8553 0.8557
9 0.8603 0.858 0.8581 0.8585
10 0.8586 0.8575 0.8576 0.8581
11 0.8585 0.8563 0.8566 0.8572
12 0.8616 0.8564 0.8568 0.8572
13 0.8628 0.8602 0.8596 0.8599
14 0.8623 0.8605 0.8608 0.861
15 0.8655 0.8611 0.8611 0.8614
16 0.8647 0.8634 0.8617 0.8618

Continued on next page
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Table A.3 - continued from previous page

Number of

Position

Oriented Window 18 | Window 20 | Window 22 | Window 24

Features
17 0.8648 0.8629 0.8643 0.8646
18 0.8663 0.8642 0.8637 0.8648
19 0.8671 0.8647 0.8652 0.8654
20 0.8669 0.8658 0.8656 0.8657
21 0.8669 0.8642 0.8668 0.867
22 0.8657 0.8653 0.8665 0.8673
23 0.8648 0.8635 0.8675 0.8661
24 0.864 0.8619 0.8666 0.867
25 - 0.8619 0.8671 0.8663
26 - 0.8606 0.8663 0.8647
27 - - 0.8654 0.8639
28 - - 0.8655 0.863
29 - - - 0.8635
30 - - - 0.8633

Table A.4: The AUC of the average ROC curve, over the 10-

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 5nt.

Number of

Position . . . .
Oriented Window 18 | Window 20 | Window 22 | Window 24
Features

1 0.8398 0.8375 0.8364 0.8370

2 0.8565 0.8547 0.8542 0.8549

3 0.8585 0.8568 0.8562 0.8573

4 0.8570 0.8554 0.8551 0.8560

5 0.8563 0.8550 0.8542 0.8554

Continued on next page
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Table A.4 - continued from previous page

Number of

Position

Oriented Window 18 | Window 20 | Window 22 | Window 24

Features
6 0.8558 0.8542 0.8538 0.8548
7 0.8574 0.8559 0.8555 0.8554
8 0.8595 0.8543 0.8543 0.8546
9 0.8590 0.8570 0.8572 0.8576
10 0.8571 0.8570 0.8564 0.8569
11 0.8503 0.8549 0.8552 0.8558
12 0.8505 0.8524 0.8564 0.8545
13 0.8508 0.8526 0.8558 0.8546
14 0.8546 0.8537 0.8567 0.8548
15 0.8566 0.8568 0.8596 0.8588
16 0.8555 0.8588 0.8613 0.8605
17 0.8584 0.8577 0.8613 0.8596
18 0.8595 0.8615 0.8639 0.8626
19 0.8597 0.8614 0.8639 0.8633
20 0.8544 0.8614 0.8642 0.8639
21 0.8546 0.8576 0.8652 0.8642
22 0.8556 0.8581 0.8628 0.8616
23 0.8561 0.8600 0.8635 0.8623
24 0.8563 0.8585 0.8644 0.8640
25 0.8563 0.8588 0.8650 0.8625
26 0.8554 0.8597 0.8651 0.8634
27 0.8547 0.8571 0.8662 0.8637
28 0.8532 0.8573 0.8661 0.8640
29 - 0.8561 0.8658 0.8628
30 - 0.8551 0.866 0.8628
31 - - 0.8649 0.8636
32 - - 0.8637 0.8630
33 - - - 0.8617
34 - - - 0.8614
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Table A.5: The AUC of the average ROC curve, over the 10-

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 7nt.

Number of
Position
Oriented Window 18 | Window 20 | Window 22 | Window 24
Features
1 0.8250 0.8237 0.8279 0.8276
2 0.8335 0.8320 0.8357 0.8357
3 0.8443 0.8423 0.8458 0.8458
4 0.8568 0.8555 0.8588 0.8586
5 0.8592 0.8574 0.8607 0.8601
6 0.8495 0.8509 0.8563 0.8558
7 0.8523 0.8542 0.8588 0.8593
8 0.8519 0.8544 0.8592 0.8584
9 0.8538 0.8547 0.8602 0.8594
10 0.8571 0.8560 0.8619 0.8607
11 0.8583 0.8591 0.8651 0.8641
12 0.8583 0.8603 0.8652 0.8650
13 0.8583 0.8604 0.8648 0.8635
14 0.8584 0.8598 0.8640 0.8639
15 0.8514 0.8597 0.8649 0.8638
16 0.8501 0.8570 0.8647 0.8621
17 0.8519 0.8568 0.8639 0.8613
18 0.8535 0.8579 0.8658 0.8637
19 0.8529 0.8591 0.8661 0.8649
20 0.8535 0.8583 0.8676 0.8654
21 0.8547 0.8590 0.8672 0.8650
22 0.8556 0.8630 0.8680 0.8668
23 0.8560 0.8604 0.8680 0.8668
24 0.8534 0.8596 0.8694 0.8674
25 0.8524 0.8604 0.8713 0.8696
26 0.8535 0.8596 0.8690 0.8682

Continued on next page
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Table A.5 - continued from previous page

Number of

Position

Oriented Window 18 | Window 20 | Window 22 | Window 24

Features
27 0.8538 0.8507 0.8685 0.8678
28 0.8539 0.8609 0.8695 0.8686
29 0.8542 0.8611 0.8702 0.8684
30 0.8537 0.8614 0.8704 0.8687
31 0.8531 0.8604 0.8706 0.8691
32 0.8512 0.8600 0.8716 0.8692
33 - 0.8591 0.7150 0.8686
34 - 0.8578 0.8709 0.8686
35 - - 0.8708 0.8684
36 - - 0.8703 0.8680
37 - - - 0.8678
38 - - - 0.8679

Table A.6: The AUC of the average ROC curve, over the 10-

fold cross validation procedure, for all naive bayes classifiers

trained with flanking region 9nt.

Number of

Position
Oriented Window 18 | Window 20 | Window 22 | Window 24
Features

1 0.8445 0.8423 0.8418 0.8420

2 0.8455 0.8534 0.8430 0.8431

3 0.8434 0.8408 0.8405 0.8392

4 0.8439 0.8432 0.8465 0.8443

5 0.8471 0.8468 0.8500 0.8482

6 0.8454 0.8469 0.8518 0.8456

7 0.8551 0.8570 0.8512 0.8557

Continued on next page
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Table A.6 - continued from previous page

Number of

Position

Oriented Window 18 | Window 20 | Window 22 | Window 24

Features
8 0.8577 0.8598 0.8631 0.8584
9 0.8557 0.8586 0.8618 0.8517
10 0.8511 0.8561 0.8601 0.8524
11 0.8520 0.8569 0.8608 0.8529
12 0.8529 0.8588 0.8627 0.8543
13 0.8540 0.8591 0.8636 0.8548
14 0.8567 0.8616 0.8661 0.8577
15 0.8578 0.8640 0.8686 0.8601
16 0.8599 0.8634 0.8676 0.8593
17 0.8540 0.8644 0.8693 0.8612
18 0.8548 0.8631 0.8392 0.8607
19 0.8540 0.8629 0.8691 0.8614
20 0.8544 0.8632 0.8694 0.8610
21 0.8558 0.8636 0.8696 0.8614
22 0.8555 0.8640 0.8703 0.8632
23 0.8562 0.8637 0.8711 0.8631
24 0.8568 0.8648 0.8715 0.8637
25 0.8577 0.8654 0.8721 0.8654
26 0.8583 0.8662 0.8727 0.8661
27 0.8549 0.8666 0.8728 0.8663
28 0.8567 0.8651 0.8744 0.8669
29 0.8555 0.8667 0.8732 0.8672
30 0.8565 0.8658 0.8747 0.8691
31 0.8561 0.8668 0.8741 0.8685
32 0.8571 0.8670 0.8758 0.8695
33 0.8572 0.8671 0.8759 0.8686
34 0.8562 0.8673 0.8759 0.8702
35 0.8558 0.8662 0.8760 0.8704
36 0.8550 0.8655 0.8762 0.8703

Continued on next page
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Table A.7: The average mean and standard deviation of the average distributions
when the computational truth is the middle point defined by the range of n top

scorers for n € {2,...,6} over the 10-fold cross validation.
‘ Number of Top scorers ‘ Average mean ‘ Average STD ‘
2 0.1261 6.0287
3 0.3589 5.6030
4 0.3694 5.5208
5 0.5648 5.5382
6 0.6015 5.5651

Table A.8: The average mean and standard deviation of the average distributions
when the computational truth is the mean value of n top scorers for n € {2,...,6}

over the 10-fold cross validation.
‘ Number of Top scorers ‘ Average mean ‘ Average STD ‘

2 0.7485 6.0201
3 0.5838 5.6456
4 0.8299 5.4579
5 0.8012 5.4983
6 0.9364 5.4741

Table A.6 - continued from previous page

Number of

Position

Oriented Window 18 | Window 20 | Window 22 | Window 24

Features
37 - 0.8651 0.8771 0.8690
38 - 0.8641 0.8762 0.8698
39 - - 0.8757 0.8690
40 - - 0.8753 0.8685
41 - - - 0.8690
42 - - - 0.8686
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