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Abstract— MicroRNAs (miRNAs) are small single stranded
RNAs, on average 22 nt long, generated from endogenous
hairpin–shaped transcripts with post–transcriptional activity.
Although many computational methods are currently available
for identifying miRNA genes in the genomes of various species,
very few algorithms can accurately predict the functional part
of the miRNA gene, namely the mature miRNA. We introduce
a computational method that uses a Naive Bayes classifier to
identify mature miRNA candidates based on sequence and
secondary structure information of the miRNA precursor.
Specifically, for each mature miRNA, we generate a set of
negative examples of equal length on the respective precursor(s).
The true and negative sets are then used to estimate probability
distributions for sequence composition and secondary structure
on each position along the RNA. The distance between these
distributions is estimated using the symmetric Kullback-Leibler
method. The positions at which the two distributions differ
significantly and consistently over a 10-fold cross-validation
procedure are used as features for training the Naive Bayes
classifier. A total of 120 classifiers were trained with true
positive and negative examples from human and mouse using
a 10-fold cross-validation procedure. A performance of 76%
sensitivity and 65% specificity was achieved using a consensus
averaging. Our findings suggest that position specific sequence
and structure information combined with a simple Bayes
classifier achieve a good performance on the challenging task
of mature miRNA identification.

I. I NTRODUCTION

M IcroRNAs (miRNAs) are small, non–coding RNAs
that play an important role in regulating the ex-

pression of numerous genes across several species [1]. As
regulatory molecules, they influence the output of many
protein–coding genes by targeting mRNAs for cleavage or
translational repression [2].

Although miRNAs are functionally similar to short inter-
fering RNAs (siRNAs), they are unique in terms of their
bio-genesis. Most of the miRNA genes are transcribed by
RNA Polymerase II. The primary transcripts of miRNAs
(pri–miRNAs) are then processed into hairpin intermediates
(precursor miRNAs or pre–miRNAs) by the microproces-
sor complex (the enzyme Drosha and the binding protein
DGCR8/Pasha). The pre-miRNAs are then exported to the
cytoplasm by RanGTP and Exportin–5. In the cytoplasm,
the pre-miRNAs are processed by Dicer into short RNA
duplexes termed miRNA duplexes. The mature miRNA from
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the miRNA duplexes then binds to an Argonaute protein,
forming the miRNP complex. The miRNAs base–pair with
their mRNA targets, leading either to mRNA cleavage, if
there is sufficient complementarity between miRNA and the
target mRNA, or to translational repression [3].

Several computational methods have been developed and
are currently used in parallel with experimental techniques
in order to facilitate the discovery of new miRNAs. Most
computational methods focus on the discovery of either novel
miRNA genes in the genomes of various species or possible
mRNA targets of the known miRNAs. On the contrary,
few attempts have been made to computationally predict
the functional part of the miRNA precursor, namely the
mature miRNA. A number of studies ( [4], [5], [6]) combine
miRNA gene prediction with the identification of a possible
start position for the mature. To our knowledge, only one
study ( [7]) focuses exclusively on mature miRNA prediction,
utilizing thermodynamic and structural information.

In this work, we introduce a computational method that
uses a Naive Bayes classifier to identify mature miRNA
candidates based on sequence and secondary structure in-
formation of the miRNA precursor.

II. M ETHOD

Naive Bayes is a simple probabilistic classification method
that assumes independence among the features of its input
patterns. In this case, features are location-specific sequence
and structure information derived from experimentally veri-
fied miRNA precursors. To better learn those features which
are specific to mature miRNAs, we trained the classifier
to discriminate between true mature samples and a set of
negative examples.

A. Negative class

Given that known miRNA precursors do not produce
multiple non–overlapping mature miRNAs from the same
arm of the foldback precursor [8], we generated a set of
negative examples in the following way: for each true mature
miRNA, we use a same-size sliding window and select all
possible ’negative’ matures which can be created by sliding
1 base pair towards either direction from the mature. These
procedure results in a very large negative set, where each
true mature has a variable number of respective ’negatives’,
depending on the length and number of precursors. To avoid
overfitting the classifier to the negative data, we only use a
randomly selected subset of 10 negative examples for each
true mature.



B. Feature Selection

The miRNA precursors form irregular hairpin structures,
containing various mismatches, internal loops and bulges.In
our method, a mature miRNA is represented as a sequence
of positions along the respective precursor(s), where each
position contains sequence information (A, C, U, G) or
structural information (match or mismatch). This location-
specific information is used to select a set of features, namely
those positions on the precursor that contain discriminatory
information between true matures and negative samples.
The discriminatory power of each position is estimated
using the symmetric Kullback–Leibler divergence between
the distributions of positive and negative data.

The Kullback–Leibler divergence (K–L divergence) is a
measure of the difference between two probability distribu-
tions [9]. For probability distributions P and Q of a discrete
random variable the K–L divergence of Q from P is defined
to be:

DKL(P ||Q) =
∑

i

P (i) log
2

P (i)

Q(i)

Unfortunately, the KL divergence is not a true metric since it
is not symmetric. In order to overcome this problem we used
the symmetric Kullback–Leibler divergence which is defined
as:

1

2
(DKL(P ||Q) + DKL(Q||P ))

which is symmetric and nonnegative [10]. This metric is
commonly used for feature selection in classification prob-
lems, where P and Q are the conditional Probability Mass
Functions (PMFs) of a feature in the two different classes.

III. R ESULTS

We have evaluated our method using a dataset of experi-
mentally verified human and mouse miRNAs from miRBase
(version 10.0 , [11], [12], [13]). The human dataset consists
of 533 precursors and 722 mature miRNAs, while the mouse
dataset consists of 442 precursors and 579 mature miRNAs.
We used 500 of the human precursors with their 692 re-
spective mature and 347 of the mouse precursors with their
440 respective matures to train and validate our classifiers
utilizing a leave-10-out cross validation procedure.

For each of the mature miRNAs in the training set, a
negative set was generated as described in section II-A. A
total of 150 classifiers were trained and the classification
performance was assessed using consensus averaging. It is
worth mentioning that in order to have a realistic estimation
of the accuracy of the classifiers, the validation sets consisted
of all potential mature miRNAs of size 22nt that could be
produced by the precursors, whose mature miRNAs were left
out from the training phase in the cross validation procedure.

Tables I, II and III show the top scoring classifiers, based
on Matthews Correlation Coefficient (MCC), for different
input features. We use three types of classifiers, each utilizing
location-specific information about the sequence (table I), the
structure (table II), and both sequence and structure (table
III) of the training examples. Each table shows the sensitivity,

TABLE I

CLASSIFIER TRAINED WITH FEATURES OF SEQUENCE INFORMATION.

Classifier’s Description Sensitivity Specificity MCC
Combination of 12 Features,
0nt flanking region 67.1% 55.10% 0.0850
Combination of 16 Features,
5nt flanking region 76.04% 53.34% 0.1074
Combination of 31 Features,
7nt flanking region 75.96% 53.20% 0.1071
Combination of 19 Features,
10nt flanking region 79.15% 47.01% 0.0960
Combination of 35 Features,
12nt flanking region 74.30% 51.33% 0.0945

TABLE II

CLASSIFIER TRAINED WITH FEATURES OF STRUCTURE INFORMATION.

Classifier’s Description Sensitivity Specificity MCC
Combination of 10 Features,
0nt flanking region 65.70% 54.30% 0.0730
Combination of 26 Features,
5nt flanking region 76.34% 52.64% 0.1056
Combination of 23 Features,
7nt flanking region 77.85% 54.29% 0.1186
Combination of 39 Features,
10nt flanking region 81.01% 56.63% 0.1373
Combination of 38 Features.
12nt flanking region 79.89% 55.51% 0.1300

specificity and Matthews Correlation Coefficient (MCC) [14]
achieved with different numbers of such features and with
different sizes of flanking regions around the mature miRNA.
The positions along the precursor which served as input
features were selected based on the K–L divergence metric
and they were located either within the mature miRNA, or
inside a flanking region around it.

We found that as the size of the flanking region increased,
the sensitivity of the classifiers tended to improve, while the
specificity remained relatively unaffected, independently of
the type of features used in the classifier. This is not the case
, though, for the classifiers with flanking region of size 12nt
with features either sequence or structure alone (tables I and
II respectively), where the extra features probably add more
noise than useful information.

Moreover, the classifiers utilizing features with combined
information for both sequence and structure achieved an
overall better performance -in terms of improved specificity
and MCC- than the ones using sequence or structure informa-
tion alone. This is very important to have a high specificity
score in this task, since the number of negative examples is
higher than the number of positive ones, as it is also reflected
in the MCC. Finally, all classifiers achieved a much higher
sensitivity than specificity score, most likely because of the
very high similarity between negative and positive examples.

IV. CONCLUSIONS

In this paper, we present a computational approach that
identifies mature miRNAs based on the secondary structure
and sequence of the precursor. We have used experimentaly



TABLE III

CLASSIFIER TRAINED WITH FEATURES OF SEQUENSE AND STRUCTURE

INFORMATION.

Classifier’s Description Sensitivity Specificity MCC
Combination of 20 Features,
0nt flanking region 68.50% 62.50% 0.1250
Combination of 29 Features,
5nt flanking region 71.32% 65.34% 0.1394
Combination of 36 Features,
7nt flanking region 74.26% 66.46% 0.1562
Combination of 42 Features,
10nt flanking region 76.50% 65.61% 0.1606
Combination of 39 Features,
12nt flanking region 77.81% 64.14% 0.1590

verified miRNAs to train and evaluate the performance of a
Naive Bayes Classifier in terms of Sensitivity and Specificity.

Most of the methods that have been made to computa-
tionally predict the functional part of the miRNA precursor
calculate their performance in terms of true positive rate only,
ignoring the false positive rate. It is a matter of semanticsand
a great challenge what is consider to be a negative example,
but the major issue in such a task is to minimize the false
positive rate.

In conclusion, our findings suggest that position specific
sequence and structure information combined with a simple
Bayes classifier achieve a good performance on this chal-
lenging task.
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