
 1

Propagation of Evolution Events
in Architecture Graphs

George Papastefanatos1, Panos Vassiliadis2, Alkis Simitsis3

1 IMIS-Athena, Athens, Hellas

gpapas@imis.athena-innovation.gr

2 Univ. of Ioannina, Dept. of Computer Science, 45110, Ioannina, Hellas
pvassil@cs.uoi.gr

3 HP Labs, Palo Alto, CA, USA
alkis@hp.com

Abstract. The success and wellbeing of large organizations rely on the smooth
functionality and operability of their software. Such qualities are largely
affected by evolution events and changes. In this paper, we are dealing with
handling evolution events in data management systems. In particular, we
consider a data-centric ecosystem that captures relational tables, along with
their schemata and constraints, as well as, views defined on top of them and
queries (being parts of software modules that are either internal to the database,
e.g., stored procedures, or external software applications that access the
database). We also consider policies that dictate the response of a software
module to a possible event. We investigate the impact of such events to the
database and present a graph-based mechanism to control propagation of
events. We formally show that this mechanism terminates and that every
database construct is annotated with a single status, regardless of the sequence
of messages that the node receives.

Keywords: database evolution, confluence, event propagation.

1. Introduction

The success and wellbeing of large organizations rely on the smooth functionality and
operability of their software. Such qualities are largely affected by evolution events
and changes. The problem we are dealing with in this paper involves the identification
and regulation of schema evolution impact in complex data-centric ecosystems and
can be summarized as follows.

We start with the Architecture Graph of a data-centric ecosystem that captures
relational tables, along with their schemata and constraints, as well as, views defined
on top of them and queries (being parts of software modules that are either internal to
the database, --e.g., stored procedures, or external software applications that access
the database). Evolution changes affecting the database structure are mapped to graph
operations on the nodes of Architecture graph. Then, the graph is annotated with
policies that dictate what is the response of a software module to a possible event

 2

(e.g., when one of the database’s tables that acts as a provider of a view is to be
deleted, the view can be annotated with a policy that vetoes the deletion).

Having this background we test the impact of a potential event to the graph. The
main mechanism for achieving that is message propagation: every time a node
receives an event, it (a) determines which policy rules apply for this event, (b)
assumes the appropriate status based on these rules, and (c) notifies its neighbors for
the event (if necessary) via the appropriate messages that act as events to their
recipients. Hence, when a potential event is submitted, the graph must be annotated
with statuses that report on whether an event is affecting a node or not, and in the case
that it does, what is the actual action to be taken for the affected node. Actions
imposed on affected nodes may in turn generate evolution events that are propagated
as new messages towards the rest of the dependent graph structures.

Therefore, briefly, we work as follows. Given an evolution event e over a node of
the Architecture Graph v, how do we guarantee that (a) the propagation of events
terminates and (b) that every node is annotated with a single status, regardless of the
sequence of messages that the node receives?

A first attempt to the problem can be found in [8]. However, that attempt focuses
on a simpler data model that did not prevent multiple messages arriving at the same
node and, due to this shortcoming, it cannot guarantee confluence of the evolution
process. Here, we solve this issue by framing change messages within high level
constructs (such as views) before they are freely flooded over the whole ecosystem’s
graph. The benefits of this process are as follows. We achieve localization of
decisions and guarantee satisfactory handling of event transactions. Working like this,
we are also able to achieve nice properties, like confluence.

Outline. The rest of the paper is structured as follows. Section 2 discusses
modeling issues. Section 3 and 4 present the message propagation mechanism and
some theoretical results, respectively. Section 5 discusses the related work and
Section 6 concludes the paper.

2. Background Modeling

In this section, we built upon our model of the architecture graph [7] and extend it in
order to guarantee a safe, confluent mechanism for message propagation. Here, we
briefly present its main modeling components and highlight how this model is
extended. In a nutshell, the main difference with [7] lies in the structure of views and
queries: here, views and queries are containers of nodes, encapsulated between the
input schemata and the output schema of a view/query. Previously, we did not
consider the input and output schemata as first class citizens of our model.

2.1 Architecture Graph

Our modeling technique represents all the aforementioned database constructs as a
directed graph G=(V, E) , which we call Architecture Graph of the ecosystem. Next,

 3

we briefly present the components of the Architecture Graph. We start with the high
level constructs, such as relations and queries, which we call modules of the
Architecture Graph, and then we move on to discuss their main properties.

Modules. A module is a semantically high level construct of the ecosystem;
specifically, the modules of the ecosystem are (a) relations, (b) views, (c) queries.
These modules are disjoint and they are connected through edges concerning provider
or semantic-level relationships, as we shall see in the sequel.

Every module defines a scope: within the scope of a module a subgraph of the
Architecture graph is assumed. For example, the attributes and local (e.g., PK,
NotNull,etc.) constraints of a relation live within the relation’s scope. A scope is
nothing more than a set of part-of relationships that connect the component (which is
expressed as a node) with its constituents. For reasons of clarity, we avoid referring to
these relationships explicitly, unless this is absolutely necessary.

Relations, R. Each relation R(Ω1,Ω2,…,Ωn) in the database schema, either a table or
a file (it can be considered as an external table), is represented as a directed graph,
which comprises: (a) a schema node, R, representing the relation’s schema; (b) n
attribute nodes, Ωi ∈Ω, i=1 .. n, one for each of the attributes; and (c) n schema
relationships, ES, directing from the relation node towards the attribute nodes,
indicating that the attribute belongs to the relation.

Conditions, C. Conditions refer both to selection conditions, of queries and views
and constraints, of the database schema. We consider three classes of atomic
conditions that are composed through the appropriate usage of an operator op
belonging to the set of classic binary operators, Op (e.g., <, >, =, ≤, ≥, != , IN , EXISTS,
ANY): (a) Ω op constant ; (b) Ω op Ω’ ; and (c) Ω op Q. (Ω, Ω’ are attributes of the
underlying relations and Q is a query.)

A condition node is used for the representation of the condition. Graphically, the
node is tagged with the respective operator and it is connected to the operand nodes
of the conjunct clause through the respective operand relationships, O. Composite
conditions are easily constructed by tagging the condition node with a Boolean
operator (e.g., AND or OR) and the respective edges, to the conditions composing the
composite condition.

Well-known constraints of database relations – i.e., primary/foreign key, unique,
not null, and check constraints – are easily captured by this modeling technique.
Foreign keys are subset relations of the source and the target attribute, check
constraints are simple value-based conditions. Primary keys, which are unique-value
constraints, are explicitly represented through a dedicated node tagged by their names
and a single operand node.

Queries, Q. The graph representation of a Select - Project - Join - Group By (SPJG)
query involves:

(a) a new node representing the query, named query node,
(b) a set of input schemata nodes (one for every table appearing in the FROM

clause). Each input schema comprise the set of attributes that participate in
the syntax of the query (i.e., SELECT, WHERE clause, etc.)

(c) an output schema node comprising the set of attributes present in the SELECT
clause.

 4

(d) a semantics node as the root node for the subgraph corresponding to the
semantics of the query, and,

(e) attribute nodes belonging to the various input schemata and output schema of
the query.

The query graph is therefore a directed graph connecting the query node with the
high level schemata and semantics nodes. The schema nodes are connected to their
attributes via schema relationships. In order to represent the relationship between the
query graph and the underlying relations, we resolve the query into its essential parts:
SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY, each of which is
eventually mapped to a subgraph.

Select part. Each query is assumed to own an output schema that comprises the
attributes, either with their original or with alias names, appearing in the SELECT
clause. In this context, the SELECT part of the query maps the respective attributes of
the input schemata to the attributes of the query’s output schema through map-select
relationships, EM, directing from the output attributes towards the input schema
attributes.

From part. The FROM clause of a query can be regarded as the relationship
between the query and the relations (or views) involved in this query. Thus, the
relations included in the FROM part are combined with the input schemata of the query
node through from relationships, EF, directing from the nodes of the appropriate input
schemata towards the relation nodes. The input schemata of the query comprise only
the attributes of the respective relations that participate in any way in the query; the
attributes of the input schemata are connected to the respective attributes of the
provider relations or views via map-select relationships.

Where part. We assume that the WHERE clause of a query is in conjunctive normal
form. Thus, we introduce directed edge, namely where relationships, Ew, starting from
the semantics node of a query towards an operator node corresponding to the
conjunction of the highest level. Then, there is a tree of nodes hanging from this
conjunction as previously described for composite constraints. The edges are operand
relationships as mentioned above among binary comparators, Boolean operators,
input attributes and constants.

Group and Order By part. For the representation of aggregate queries, we employ
two special purpose nodes: (a) a new node denoted as GB∈GB, to capture the set of
attributes acting as the aggregators; and (b) one node per aggregate function labeled
with the name of the employed aggregate function; e.g., COUNT, SUM, MIN. For the
aggregators, we use edges directing from the semantics node towards the GB node that
are labeled <group-by> , indicating group- by relationships, EG. The GB node
comprises separate children nodes for all attributes acting as aggregators. These edges
are schema relationships, which are additionally tagged according to the order of the
aggregators; we use an identifier i to represent the i-th aggregator. Each of these
attribute nodes is connected with the respective input attributes with a <map-

select> edge. Moreover, for every aggregated attribute in the query’s output
schema, there exists an edge directing from this attribute towards the aggregate
function node as well as an edge from the function node towards the respective input
attribute. Both edges are labeled <map-select> and belong to EM, as these

 5

relationships indicate the mapping of the query attribute to the corresponding relation
attribute through the aggregate function node.

The representation of the ORDER BY clause of the query is performed similarly.

Functions, F. Functions used in queries are integrated in our model through a
special purpose node Fi ∈F, denoted with the name of the function. Each function has
an input parameter list comprising attributes, constants, expressions, and nested
functions, and one (or more) output parameter(s). The function node is connected
with each input parameter graph construct, nodes for attributes and constants or sub-
graph for expressions and nested functions, through an operand relationship directing
from the function node towards the parameter graph construct. This edge is
additionally tagged with an appropriate identifier i that represents the position of the
parameter in the input parameter list. An output parameter node is connected with the
function node through a directed edge from the output parameter towards the function
node.

Views, V. Views are treated as queries; however the output schema of a view can
be used as input by a subsequent view or query module.

Summary. A summary of the Architecture Graph is a zoomed-out variant of the
graph that comprises only of modules as nodes and edges denoting any possible form
of provider relationship between modules. Formally, a summary is a directed acyclic
graph Gs=(Vs, Es) , with Vs⊆R∪V∪Q comprising the graph’s module nodes and Es⊆EF
comprising pairs of providers and consumers as from-relationship edges, EF.

Example. The following example (Fig. 1) shows a small university database. The
database contains information on semesters, standard, recurring data for the courses
offered by a department, specific data for the courses offered by the department in a
particular semester, as well as information for students and their transcript – i.e., what
course they have enrolled to and with what grade. The names of the relations and their
attributes are self-explanatory.

On top of this database, we define two views and two queries. The first view,
V_Course, combines three relations, Semester, CourseStd, and Course into a single
view that contains both the identifiers and the descriptions of the involved entities.
The second view, V_Tr, joins V_Course with the relation Transcript, resulting in a
view that outputs all the information needed for every student’s enrollment. Then, we
have two queries. The first query performs a self-join over view V_Tr and presents a
report that compares the grades for two courses, DB_I and DB_II for those students
who enrolled in both of them. The second query reports the average grade (i.e., over
successfully passed courses) for every student; the report requires students’ names, so
the relation Student is joined to the view V_Tr

We have omitted all constraints (e.g., primary and foreign key) as well as map-
select edges from the figure to avoid overcrowding it. The map-select edges can be
deduced from the names of the attributes

 6

Fig. 1. Architecture graph of the Reference example

 7

2.2 Graph Annotation with Policies

The presented graph model enables us to capture the various dependencies between
the modules of the ecosystem at a most granular level. Apart from the simple task of
capturing the semantics of a database ecosystem, the proposed graph model allows us
to evaluate the impact of a change over the system. In [8] we have provided a subtle
technique for mapping schema changes occurring at the database ecosystem to
operations on the node of the graph (e.g., the addition of an attribute in a relation is
mapped to an addition of a child node in the relation module). In addition, we have
enriched the graph with rules, called policies that dictate the actions that are
performed, when specific events occur on the nodes of the graph. Policies can be
applied at various granularity levels on the graph, i.e., from the module level down to
the level of attributes and operand nodes, ensuring that the reaction to events for all
nodes in the graph [9]. Two kinds of rules are defined with respect to the semantics
incurred by an event, (a) propagate the change, meaning that the graph must be
reshaped to adjust to the new semantics incurred by the event; and (b) block the
change, meaning that we want to retain the old semantics of the graph and the
hypothetical event must be blocked or, at least, constrained, through rewriting that
preserves the old semantics. For instance, the policy “On add_attribute to
Transcript Then propagate ” defined on V_Tr.INS_T node dictates the
propagation of the addition of a new attribute in the Transcript relation towards the
schema of the view. Simple default values and policy resolution rules can safely
guarantee that all nodes can determine the appropriate policy for any event they
receive. We refer the interested reader to [8], [9] for a thorough discussion.

2.3 Message propagation and Status Resolution

Whenever a hypothetical event over a node (e.g., the deletion of an attribute) is
submitted to the graph, the system must ensure that (a) the event is propagated to all
the nodes that are affected directly or transitively, (b) each of the affected nodes
acquires the correct status, according to its annotation with policies for this event.

Policy Determination. Clearly, it would be very hard for the user to have to define
a policy per event for every module of the Architecture Graph. In [9], we have
defined a language where the user can dictate “default” policies both at the graph
level and for the children of individual nodes, in order to avoid this effort. In fact, the
language allows the user to define policies at different levels of abstraction which can
be overriding one another (so, for example, if the default policy for the deletion of
input schema attributes is block, the user can override it for the input schema
attributes of a particular view). Then, a late-binding mechanism determines the
winner policy for each specific node. For a most detailed description of the policy
annotation and determination, we refer the interested user to [9].

Status Determination. Status determination stems from the simple application of
rules. Given a finite vocabulary of events, VE, a finite vocabulary of policies VP and a

 8

finite vocabulary of statuses VS, the only thing that we need is a set of rules as
function DS: VE x VP -> VS.

Table 1. Vocabularies for events, policies and statuses of nodes

VE {SELF, CHILD, PROVIDER} x {ADD, DEL, UPD} x {STRUCTURE, SEMANTICS, S+S}

VP {BLOCK, PROPAGATE}

VS {SELF, CHILD, PROVIDER} x {ADD, DEL, UPD} x {STRUCTURE, SEMANTICS, S+S }

Table 1 explains that the events for which a node is notified state that either itself,
or one of its children (e.g., a relation’s attribute, or an attribute’s constraint) or a
provider is affected (by addition, deletion or update) with respect to its structure,
semantics or both. The policies are either Block (which dictates that the event is
practically vetoed at the node’s scope) or Propagate. Lastly, the statuses assigned can
have a scope indicating whether the impact of the event refers to the node itself, its
ancestors within a module or its provider nodes.

Event propagation. The third part of the mechanism is the broadcasting of
messages to the neighbors of a node that acquires a status for an event. Each message
corresponds to a unique event occurring on the sender node and describes the event
type and the status assigned to it according to the prevailing policy. Each message is
processed locally, inside a module and may trigger one or more events for further
propagation to the consumer modules.

For example, the deletion of an attribute that participates in the SELECT and
WHERE clauses of a view, generates a new message for the consumers of the view;
this message encodes the modification of the view’s structure and semantics.

3. Message propagation mechanism

At the high level, the graph nodes form a directed acyclic graph of dependencies.
Thus, it is straightforward to obtain a topological sorting of the summary of the
architecture graph. We can easily enforce the rule that “modules communicate with
each other via a single means: the output schema of a provider module notifies the
input schema of a consumer module”. In such cases, the following protocol is used:

(i) We topologically sort the graph at the module level.
(ii) We visit each module with its topological order and we check whether there

are incoming messages for it. If this is the case, the topological sort guarantees
that all messages pending for the input schemata of the module are ready.

(iii) Every module processes locally the incoming events and also, locally decides
the status for its semantics and output schema. Next, it is ready to propagate
this information to all its consumers (if any).

We examine, now, the protocol for handling of the events within each module as
well as the structure and contents of the outgoing message to the consumer nodes of
an affected node; this is the topic of this section.

There are four kinds of nodes involved in the propagation mechanism.

 9

– Input schemata nodes, which are the kind of nodes that receive
notifications for changes from other modules.

– Internal nodes, which are: (a) possibly affected by the changes to the nodes
of the input schema and (b) amenable to evolution events by the users (e.g.,
a user altering the selection condition or the grouper attributes of a view).

– Output schema nodes, which are the only nodes who emit messages to their
consumer modules for the possible modification of their component.

– Semantics nodes, which determine whether the semantics of a component
are the same or not and inform the output schema nodes for further
propagation.

The requirements that we want to address regarding the message handling within a
module are that each event must affect the appropriate nodes and that every node
must be visited and processed (i.e., its status must be determined) once per message.
Hence, we introduce a process mechanism with the following characteristics:

 (a) Messages arriving at a node are propagated to all of its consumers (i.e.,
adjacent nodes connected with an incoming edge to this node) according to the type
of event that they encode (e.g., the addition of an attribute is propagated only to
semantics and output nodes, whereas the deletion of an attribute is propagated to
attribute nodes). We describe this mechanism in the following sections.

(b) For each event initiated by the input schema or the user, we identify the
affected subgraph of the module according to the protocol mechanism as described in
the following sections. For identifying the subgraph, we process each event by
executing the protocol mechanism and assuming that no policies constrain the
flooding process. The produced subgraph contains only these nodes potentially
affected by this event.

(c) Given that each identified subgraph is acyclic (see theorem 3), we again
perform a second execution of the protocol, starting from the input schema (or the
node affected explicitly by the user) and visiting each node in a topological order of
the subgraph. According to the policy defined, an event processed on a node generates
one or more messages, which are enqueued in the message list of all of its consumers.
The next node to be processed is the next in the topological order of the identified
subgraph. The mechanism guarantees that each node is processed once, after all
possible messages have arrived at it.

Next, we present the message handling mechanism for each class of nodes. The
general structure of the event propagation mechanism is presented in Figure 2.

 10

Fig. 2. Event propagation mechanism within modules

Input schema nodes. An input schema receives messages from the output schema
nodes of the providing relation / view containing occurred events on the provider’s
structure or semantics. For instance, the output schema of a relation module can report
the following events to the input schema node of a query accessing this relation:

(a) The relation is renamed or deleted.
(b) Attributes are added/ deleted / updated (renamed or modified).
(c) Constraints are added/ deleted / updated (renamed or modified). Events

occurred on relation constraints eventually generate messages stating the
semantic change of the relation.

For any of the above events a message is constructed and received by all input
schema nodes accessing the relation. The detail mechanism that is triggered by the
input schema node when receiving such a message is as follows:

(i) The correct policy (based on the type of the received message) is determined
for the receiving input schema node.

(ii) The rule dictating the policy is fired and the appropriate status is assumed. In
the case of propagation, the node assumes a status for adjusting to the event,
whereas in the case of block policy, the node takes a status for blocking the
event. For example, in the case of an incoming message for the addition of a
new attribute, for which the input schema retains a propagate policy, the input
schema node is assigned with a status for adding a child.

(iii) For events referring to the input attributes (e.g., deletion of an attribute at the
provider’s schema, renaming, domain modification, etc.) the appropriate input
attribute nodes of the input schema are notified.

(iv) The input schema node propagates a message containing changes on the
semantics of the provider module directly to the semantic node of the current
module – if such changes exist; otherwise no such action is taken.

 11

(v) The input schema node propagates a message for addition of children towards
the output schema node of the module and (if any) to the group by node via the
semantic node.

Observe that each input schema has exactly one provider (i.e., the output schema of
the provider module. Hence, it can receive exactly one message that triggers the
evolution handling mechanism in every module. In other words, a module can
receive, at most, as many event handling messages for the same original event as its
input schemata. An alternative way to start the mechanism is by a user applying a
change at the module, which again triggers exactly one “input” message possibly at
an internal node.

Internal nodes. These can be either attributes in the input/ output schemata of a
module, or logical components of the semantics node of a module, like a function
node, an operand or a constant node, group by node, etc.

Intra-module nodes can receive messages either from (a) their father (e.g., an input
schema node notifies that a specific input attribute must be deleted), (b) from their
provider nodes (e.g., an output attribute node or an operand node is notified by its
provider attribute in the input schema for its deletion), (c) one of its children or lastly
(d) explicitly by the user who triggers the modification of the node itself.

The message propagation for the nodes of this category mainly notifies all their
consumers on what is happening to them as well as notifying the semantics node on
whether the semantics of the component change. Therefore, the mechanism for each
such node is as follows:
 (i) – (ii) The first two steps are like those of the input schema nodes.

(iii) If the node has children and receives a notification from its father or if it
initiates the event, then its children are notified too. This mainly applies to
operand nodes in composite conditions at views and queries or relations’
attributes having constraints (e.g., conditions) as children.

(iv) If the node notified by one of its providers or one of its children, the father of
the node is notified, too. This covers the case where a user triggers an event in
the contents of a view (e.g., deletion of a condition) or a relation (e.g.,
modification of an attribute), so that the event would be also propagated
upwards to the module node.

(v) In all cases, the node consumers (if any) are notified too. This covers the case
where an input attribute is changed, so that the event is propagated towards all
nodes (i.e., output attributes, conditions, functions, group by attributes) that
refer to this attribute.

Observe that this way, every node notifies its consumers, and every node does not
receive a message for the same event more than once per edge. The key here is that
there is a flow of the messages, either from an ancestor node towards its descendants,
or from an intermediate node towards both its ancestors and its descendants. Since
cycles do not exist, every node receives each message exactly once, except for binary
nodes (e.g., ‘=’ or ‘AND’ nodes in constraint trees that might receive a status from
both their edges). However, due to the topological sorting of the tree, if an
intermediate node in the semantics tree receives a first notification from one of its two
edges, it is possible to check whether another notification is also pending before
deciding its final status. At the end of this process, the semantics node receives one

 12

message (either a contingency blocking veto, or a propagation message) for a
potential change in the subtrees of the Where or the Group By nodes.

Semantics nodes. A semantics node receives messages either from the input
schema of the module for messages containing changes on the semantics of the
provider modules or from its children. The mechanism that is triggered by the
semantics node when receiving such messages is as follows:
 (i) – (ii) The first two steps are like those of the input schema nodes.

(iii) The semantic node propagates a message for addition of children towards (if
any) the group by node.

(iv) The semantics node propagates all other messages coming from either the
input schema node (e.g., for changes in the semantics of a provider module) or
its children (i.e., for changes in the semantics of the module itself) to the
output schema node of the module.

Output schema nodes. The output schema is responsible for establishing the
overall status of the module. An output schema node can receive messages from the
semantics node regarding semantic changes in the module, from the input schema for
additions of attributes or from one of its children for changes referring to the exposed
structure of the module. The following mechanism is applied for handling a received
event signal:
 (i) – (ii) The first two steps are like those of the input schema nodes.

(iii) The father of the output schema node, i.e., the module’s node, is notified too.
Whenever the module’s node gets a notification from the output schema it
acquires the right status (i.e., block if a veto has been fired or the appropriate
status in any other case).

(iv) Except for the case the assigned status is block, all consumers (input schemata)
of the output schema node are notified with a message announcing the
module’s status

Table 2: Overview of message propagation for each kind of node in a module

Messages arrive from Type of
node

Messages propagated to

{provider’s output schema} Input
schema

{children, semantics, output
schema}

{father, provider, children, user(self)} Internal
Nodes

{children (if any), consumers,
father}

{input schema, children} Semantics {output schema}
{semantics, children, input schema} Output

schema
{consumers’ input schema, module}

Example: We, illustrate the propagation mechanism by examining two specific
evolution events on the graph of Fig.1: (a) the addition of a new attribute to the
Transcript relation, namely ExamYear , that represents the year that the student has
taken the exam on each course and (b) the removal of attribute MDescr from the
select clause (i.e., output schema) of V_Course view. We assume that both changes
are explicitly invoked by the user and for each of them, we hold the nodes that are

 13

visited by the algorithm, the kind of messages that arrive to these nodes, the status
that is assigned on them, the messages that they emit and lastly the forward nodes that
they inform. We, also, assume that propagate policy is assigned on all visited nodes
and thus termination of the mechanism is not caused by a block policy.

(a) Addition of ExamYear (EY) attribute to Transcript table: The
message propagation for this event is presented in Table 3. The message for the
addition of EY on the Transcript node, results in assigning the appropriate
status for adding EY as a new child. Since the policy is propagate, an identical
message is created and the input schema node V_TR.INS_T connected with the
Transcript node is visited. The V_TR.INS_T node adapts the event and
informs the output schema node for the addition. The affected subgraph for this
event according to our mechanism comprises nodes {V_TR.INS_T,

V_TR.OUT_S,V_TR} which are visited in this order.
The V_TR.OUT_S node propagates, in turn, the event towards all input schema
nodes referring to the V_Tr view. For the Q_pass 2courses (Q1) query, each
input schema node (i.e., Q1.INS_V2 and Q1.INS_V1) receives a distinct
message for the attribute addition. These messages are propagated towards the
query output schema Q1.OUT_S as two separate events. The message
propagation terminates on the output schema nodes of the two queries (see Figure
1 too), Q1.OUT_S and Q2.OUT_S, as no other consumer modules exists. The
output schema of the Q_allStudentsGPA (Q2) query, receives two messages for
two separate events; one for the addition of the attribute in the input schema of
the query and the other for the modification of the semantics as result of the
incorporation of the new attribute to the group by clause of the query.

Table 3: Message Propagation for the addition of ExamYear to table Transcript

visited
module

Visited
Node

message
arriving

Status message
emitted

next node
in queue

Transcript Transcript AC {EY} To_AC AC {EY} V_TR.INS_T
V_TR INS_T AC {EY} To_AC AC {EY} OUT_S

 OUT_S AC {EY} To_AC AC {EY} {V_TR
Q1.INS_V1,Q1.INS_V2,Q2.INS_V}

 V_TR AC {EY} To_AC none None
Q1 INS_V1 AC {EY} To_AC AC {EY} OUT_S

 INS_V2 AC {EY} To_AC AC {EY} OUT_S
 OUT_S AC {EY} To_AC AC {EY} Q1
 Q1 AC {EY} To_AC AC {EY} None

Q2 INS_V AC {EY} To_AC AC {EY} {SMTX, OUT_S}
 SMTX AC {EY} To_MS AC{EY},MS {GB, OUT_S}
 GB AC{EY},

MS
To_AC AC{EY} None

 OUT_S AC{EY},
MS

To_AC,
To_ MS

AC{EY},
MS

Q2

 Q2 AC{EY},
MS

To_AC,
To_ MS

none None

Legend: AC: Add_Child,Q1: Q_pass2courses, Q2: Q_allStudentsGPA, MS: Modify_Semantics

 14

Table 4: Message Propagation for the deletion of MDescr from V_Course view

visited
module

visited
node

message
arriving

status message
emitted

next node
in queue

V_Course MD DS To_DS DS OUTS
 OUTS DS To_DC DC{MD} V_TR.INS_VC

V_TR INS_VC DC{MD} To_DC DC{MD} INS_VC. MD
 INS_VC.MD DC{MD} To_DS DS OUT_S. MD
 OUT_S.MD DS To_DS DS OUT_S
 OUT_S DS To_DC DC{MD} V_TR
 V_TR DS To_DC DC{MD} none

Legend: DS: Delete_Self, DC: Delete_Child, MDescr: MD

(b) Deletion of attribute MDescr from V_Course view. The removal of attribute
MDescr(MD) from the select clause of V_Course view starts on MDescr node
of output schema node V_Course.OUT_S (Table 4). The message is first
propagated towards its father, namely V_Course.OUT_S , which is assigned with
a status for deletion of one of its children, and then input schema node
V_TR.INS_VC is informed about the deletion. V_TR.INS_VC is assigned with
the same status and propagates the message to the specific child node to be
deleted. Attribute MDescr of V_TR.INS_VC informs, in turn, the consumer
attribute belonging in the output schema of the view. The propagation terminates
on the output schema node V_TR.OUT_S since no other consumers exist for the
specific attribute.

4. Theoretical Guarantees

In this section, we present the theoretical guarantees for the correct execution,
termination and confluence of the aforementioned protocol mechanism on the
architecture graph. We examine and prove these properties both at the summary
graph, i.e., at the intermodule level (theorems 1-3), as well as within each module
(theorem 4).

4.1 Guarantees at the intermodule level

In this subsection, we prove that the mechanism for message propagation works
correctly at the summary or, intermodule level. We assume that each module responds
correctly to a given event; we prove this property in the subsequent subsection.

 Theorem 1 (termination). The message propagation at the intermodule level
terminates.

Proof: The summary of the Architecture Graph is a directed acyclic cycle. This is
due to the fact that a query depends only on views and relations and relations do not
depend on anything (in the context of this paper, we do not consider cyclic foreign
key dependencies). Since the summary graph is a DAG, we can topologically sort it
and propagate the messages according to this topological order. Thus, all that it takes

 15

for the message propagation mechanism to terminate is: (a) each module emits at
most one message for each session to every one of its neighbors; (b) the graph is
finite. Since both assumptions hold, the algorithm terminates. �

Theorem 2 (unique status). Each module in the graph will assume a unique status
once the message propagation terminates.

Proof: At the summary level, each input schema of a consumer module receives
the status and the output schema structure of its provider module. The topological
ordering of the graph guarantees that whenever a module is considered, all its
providers have already been processed. So, all that remains is to prove that once all
notifications from the module’s providers are in place, the module will uniquely
acquire a status. This is proved in Theorem 4. �

Theorem 3 (correctness). Messages are correctly propagated to the modules of the
graph.

Proof: The modules that must be appropriately notified are these for which an
event occurs at their providers. From definition, at the summary level the Architecture
graph is a connected graph, where one (or more) input schema node(s) of a consumer
module is connected via directed edges to the output schema node(s) of its providers.
The messaging mechanism dictates that each message is propagated from the output
node of the provider module towards the input schema node of all consumer modules,
unless a block policy explicitly halts the propagation. Thus, the connectivity of the
graph assures that the modules, which are eventually visited by the message
propagation mechanism, have at least one of their providers affected. On the other
hand, the modules that are not visited by the mechanism (a) either do not have any
provider affected or (b) a block policy exists; therefore, they can safely ignore any
notification. �

4.2 Guarantees at the intramodule level

In this subsection, we prove that once an event arrives at a module, the module
responds to the event and annotates the output schema with the correct status.

Theorem 4 (termination and correctness). The message propagation at the
intramodule level terminates and each node assumes a status.

Proof: At the intra-module level, for the termination of the mechanism, we must
prove that each constructed subgraph per event type is a directed acyclic graph. For
the correctness of the mechanism we require that every node is processed once (and
thus assigned with a status) for all messages arriving at a module per session. The
latter can be satisfied when the determined subgraph can be topologically sorted and
traversed. Thus, for both requirements we must prove that the subgraph that is
constructed per event type has no cycles. We cover the following types of messages
arriving at the module:
• Change in semantics of provider: the message arrives to the input schema

node and is propagated to the semantics node. The affected subgraph
comprises the following nodes and directed edges in topological order:

 16

{input schema �semantics �output schema �module} 1. No cycles detected.
• Internal change in the semantics of a module (e.g., a user deletes a part of the

condition expression of a view): the semantics node is eventually notified
from the upwards flow of messages in the semantics tree and the children are
notified from the downwards flow of messages.
o For the case that a condition node is modified, subgraph comprises

{internal node �up condition tree �semantics �output schema �module} ,
{internal node �down condition tree} . No cycles detected.

o For the case that a grouping attribute is modified, subgraph comprises:
{GB Attributes �GB�semantics �output schema �module}

• Deletion in the structure of the input schema: all affected nodes in the tree of
the condition part are notified via the operand relationship edges; all group
by and output schema are notified via the map-select edges. Subgraph
potentially (if group by part exists) comprises:
{input schema �input attributes},
{input attributes �condition tree �semantics},
{input attributes �GB attributes �GB node�semantics},
{input attributes �output attributes �output schema}
{semantics �output schema} and

{output schema �module} . No cycles detected.
• Addition in the structure of the input schema: a message is sent to the output

schema and to the semantic node for informing the group by node (if any).
Subgraph potentially comprises:
{input schema �semantics},
{input schema �output schema},
{semantics �GB node},
{semantics �output schema},

{output schema �module}. No cycles detected
• Deletion of in the input schema overall (the provider dies overall too): the

deletion is correctly propagated from the messages sent by all the child
nodes of the schema.

• Change in structure (deletion or addition) and semantics of a provider. When
messages arriving at an input schema node contain changes both at the
structure and the semantics of the provider module, the subgraph is the union
of the subgraphs corresponding to each case. Thus, for attribute addition and
change in provider semantics, the subgraph is:
{input schema �semantics},
{input schema �output schema},
{semantics �GB},

{semantics �output schema �module} . No cycles detected
For attribute deletion and change in provider semantics, the subgraph is:
{input schema �semantics},
{input schema �input attributes},
{input attributes �condition tree �semantics},
{input attributes �GB attributes �GB node�semantics},

1 For ease of graph serialization we denote an edge directing from input schema towards

semantics as “input schema�semantics”.

 17

{input attributes �output attributes �output schema}
{semantics �output schema} and

{output schema �module} . No cycles detected

In all cases, at the end of the process, the output schema (and eventually the module
itself) has knowledge (a) of what happens to their children and (b) what happens to
module and can pass this information to the next consumer. �

Theorem 4 dictates that all nodes at the intramodule level will be processed once
and assigned with a status. The processing order is predetermined by the type of event
arrived at the module and the propagation mechanism terminates at the module node,
which denotes the overall status of the module.

The status assigned to each node is determined by the type of node, the type of
event encoded in the message arriving at the node and the type of policy defined on
the node; thus, if only one message arrives at a node, a unique status can be easily
determined. However, in the case that a node receives two or more messages (i.e.,
from many providers) containing different events, a unique status must first be
resolved for these different events and then propagated to next nodes. In the next
proposition we show that all internal nodes eventually obtain a unique status per
session, regardless of the number of different messages arriving at them.

Proposition 1 (unique status). All internal nodes visited by the algorithm will
obtain a unique status according to the defined policy and the types of events encoded
in the received messages.

Proof: We distinguish the following types of nodes: input schema node, input
attributes, semantics node, GB node, grouping attributes, nodes in condition tree
(condition nodes and constants), output attributes, output schema node and lastly,
module node. According to theorem 4, for all cases of events, the types of nodes
which can potentially receive two or more different messages in a single session are
the output schema and the semantics nodes. All other nodes have either one provider
in each subgraph derived by the mechanism (e.g., in the case of attribute addition the
GB node receives a message from the semantics node, whereas for attribute deletion it
receives a message from one of the grouping attributes), or multiple arrived messages
are of the same type (e.g., a condition node receives two messages for the deletion of
both operand nodes). Unless the policy defined on the node is block (the status is
always resolved as block), the status is uniquely determined according to the type of
event. A semantics node however can receive at the same time a message from the
input schema (e.g., for a change in the providers’ semantics or the addition of an
attribute) and one or more messages from its children (e.g., for the deletion of a
condition or a grouping attribute). In all cases the resolved status for propagate policy
is the same, namely “to modify semantics”, and thus no ambiguous statuses can be
assigned to the semantics node. Output schema, on the other hand, can potentially
receive a message from the input schema for attribute additions, a message from the
semantics node for the update of the module semantics, and a message from its
children for the deletion of an output attribute. For propagate policy, the resolved
status depends on the received message and can denote modification in semantics,
structure or both (e.g., “to modify semantics and add attribute X”, or “to modify
semantics and delete attribute Y”, etc.). In all cases, statuses are uniquely identified in
all nodes within a module, regardless of the number of messages received.

 18

5. Related Work

Schema evolution is a long-term problem in database research, addressed each time
under the specific characteristics and operations of the approached data model. In [11]
one of the earliest surveys on schema versioning and evolution is presented, whereas
a categorization of the overall issues regarding evolution and change in data
management is presented in [10]. Evolution related approaches have been also
proposed for the OO paradigm [13] and DW configurations [3, 4], as well. Relational
schema evolution and versioning are revisited in [5], where the authors introduce a
technique for publishing the history of a relational database in XML, employ a set of
schema modification operators (SMOs) to represent the mappings between successive
schema versions and an XML query language to efficiently address queries expressed
over different versions using the mappings established by the SMOs.

Related to our approach, the problem of view adaptation after redefinition is
mainly investigated in [1, 2] where changes in views definition are invoked by the
user and rewriting is used to keep the view consistent with the data sources. Also, [5]
deals with the view synchronization problem, which considers that views become
invalid after schema changes in their definition. The authors extend SQL, enabling the
user to define evolution parameters characterizing the tolerance of a view towards
changes and how these changes will be dealt with during the evolution process. In this
context, our work can be compared with that of [5] in the sense that policies act as
regulators for the propagation of schema evolution on the graph similarly to the
evolution parameters introduced in [5]. In [12] a similar framework for the
management of evolution is proposed. Still, the model of [12] is more restrictive, in
the sense that it is intended towards retaining the original semantics of the queries by
preserving mappings consistent when changes occur. Our work is a larger framework
that allows the restructuring of the database graph (i.e., model) either towards keeping
the original semantics or towards its readjustment to the new semantics. In addition,
we employ a detail representation and a message propagation mechanism for
detecting and regulating evolution impact in complex database ecosystems.

Our rule-based propagation of schema evolution changes in architecture graphs
shares some common characteristics with problems related to the definition and
management of active rules in database systems. We mention the work presented in
[14], where the authors formulate the problems of termination, confluence and
observation in active database rules. Given a set of active rules, the authors provide
formal methods for evaluating whether the execution of this set terminates, produces a
unique final database state, or finally produce a unique stream of observable actions
regardless of the rules’ execution order.

6. Conclusions

In this paper, we focused on the problem of change propagation in database
ecosystems. Based on a graph representation of database constructs and considering
that this graph can be annotated with policies dictating the response of a software

 19

module to a possible event, we investigated the impact of such events to the database
and presented a graph-based mechanism to control propagation of events.

7. References

1. Z. Bellahsene, “Schema evolution in data warehouses”. Knowledge and Information
Systems, vol. 4, no. 3, pp. 283-304, May 2002.

2. Gupta, I. S. Mumick, J. Rao, K. A. Ross, “Adapting materialized views after redefinitions:
Techniques and a performance study”. Information Systems J, vol. 26, no. 5, pp. 323-362,
Jul. 2001.

3. M. Golfarelli, J. Lechtenbörger, S. Rizzi, G. Vossen, “Schema Versioning in Data
Warehouses”, Proc. Conceptual Modeling for Advanced Application Domains, ER 2004
Workshops (ECDM’04) , pp. 415–428, 2004.

4. C. Kaas, T. B. Pedersen, B. Rasmussen, “Schema Evolution for Stars and Snowflakes”.
Sixth Int’l Conference on Enterprise Information Systems (ICEIS’04), pp. 425-433, 2004.

5. Moon, H.J., Curino, C.,Deutsch, A., Hou, C.Y., Zaniolo, C. Managing and querying
transaction-time databases under schema evolution. In VLDB' 08, pp. 882-895, 2008.

6. Nica, A. J. Lee, E. A. Rundensteiner, “The CSV algorithm for view synchronization in
evolvable large-scale information systems”. Proc. Sixth International Conference on
Extending Database Technology (EDBT’98), pp. 359-373, 1998.

7. G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, “What-If Analysis for Data
Warehouse Evolution”. Proc Ninth International Conference on Data Warehousing and
Knowledge Discovery (DAWAK’07), pp. 23-33, 2007.

8. G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. Policy-Regulated
Management of ETL Evolution. In Springer Journal on Data Semantics, vol. XIII, pp. 146–
176, 2009.

9. G. Papastefanatos, P.Vassiliadis, A.Simitsis, K.Aggistalis, F.Pechlivani, Y.Vassiliou,
“Language Extensions for the Automation of Database Schema Evolution”. In 10th
International Conference on Enterprise Information Systems (ICEIS '08),2008.

10. J.F. Roddick et al, “Evolution and Change in Data Management - Issues and Directions”.
SIGMOD Record, vol. 29, no. 1, pp. 21-25, 2000.

11. J.F. Roddick., “A survey of schema versioning Issues for database systems”. Information
Software Technology J., vol. 37, no. 7, 1995.

12. Y. Velegrakis, R.J. Miller, L. Popa, “Preserving mapping consistency under schema
changes”. VLDB J., vol. 13, no. 3, pp. 274-293, 2004.

13. R. Zicari, “A framework for schema update in an object-oriented database system”. Proc.
Seventh International Conference on Data Engineering (ICDE’91), pp. 2-13, 1991.

14. A. Aiken, J. M. Hellerstein, J. Widom: Static Analysis Techniques for Predicting the
Behavior of Active Database Rules. ACM Trans. Database Syst. 20(1): 3-41 (1995).

