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Abstract. The success and wellbeing of large organizations rely on the smooth 
functionality and operability of their software. Such qualities are largely 
affected by evolution events and changes. In this paper, we are dealing with 
handling evolution events in data management systems. In particular, we 
consider a data-centric ecosystem that captures relational tables, along with 
their schemata and constraints, as well as, views defined on top of them and 
queries (being parts of software modules that are either internal to the database, 
e.g., stored procedures, or external software applications that access the 
database). We also consider policies that dictate the response of a software 
module to a possible event. We investigate the impact of such events to the 
database and present a graph-based mechanism to control propagation of 
events. We formally show that this mechanism terminates and that every 
database construct is annotated with a single status, regardless of the sequence 
of messages that the node receives.  
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1. Introduction 

The success and wellbeing of large organizations rely on the smooth functionality and 
operability of their software. Such qualities are largely affected by evolution events 
and changes. The problem we are dealing with in this paper involves the identification 
and regulation of schema evolution impact in complex data-centric ecosystems and 
can be summarized as follows.  

We start with the Architecture Graph of a data-centric ecosystem that captures 
relational tables, along with their schemata and constraints, as well as, views defined 
on top of them and queries (being parts of software modules that are either internal to 
the database, --e.g., stored procedures, or external software applications that access 
the database). Evolution changes affecting the database structure are mapped to graph 
operations on the nodes of Architecture graph. Then, the graph is annotated with 
policies that dictate what is the response of a software module to a possible event 
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(e.g., when one of the database’s tables that acts as a provider of a view is to be 
deleted, the view can be annotated with a policy that vetoes the deletion).  

Having this background we test the impact of a potential event to the graph. The 
main mechanism for achieving that is message propagation: every time a node 
receives an event, it (a) determines which policy rules apply for this event, (b) 
assumes the appropriate status based on these rules, and (c) notifies its neighbors for 
the event (if necessary) via the appropriate messages that act as events to their 
recipients. Hence, when a potential event is submitted, the graph must be annotated 
with statuses that report on whether an event is affecting a node or not, and in the case 
that it does, what is the actual action to be taken for the affected node. Actions 
imposed on affected nodes may in turn generate evolution events that are propagated 
as new messages towards the rest of the dependent graph structures.  

Therefore, briefly, we work as follows. Given an evolution event e over a node of 
the Architecture Graph v, how do we guarantee that (a) the propagation of events 
terminates and (b) that every node is annotated with a single status, regardless of the 
sequence of messages that the node receives? 

A first attempt to the problem can be found in [8]. However, that attempt focuses 
on a simpler data model that did not prevent multiple messages arriving at the same 
node and, due to this shortcoming, it cannot guarantee confluence of the evolution 
process. Here, we solve this issue by framing change messages within high level 
constructs (such as views) before they are freely flooded over the whole ecosystem’s 
graph. The benefits of this process are as follows. We achieve localization of 
decisions and guarantee satisfactory handling of event transactions. Working like this, 
we are also able to achieve nice properties, like confluence. 

Outline. The rest of the paper is structured as follows. Section 2 discusses 
modeling issues. Section 3 and 4 present the message propagation mechanism and 
some theoretical results, respectively. Section 5 discusses the related work and 
Section 6 concludes the paper.   

2. Background Modeling 

In this section, we built upon our model of the architecture graph [7] and extend it in 
order to guarantee a safe, confluent mechanism for message propagation. Here, we 
briefly present its main modeling components and highlight how this model is 
extended. In a nutshell, the main difference with [7] lies in the structure of views and 
queries: here, views and queries are containers of nodes, encapsulated between the 
input schemata and the output schema of a view/query. Previously, we did not 
consider the input and output schemata as first class citizens of our model. 

2.1 Architecture Graph 

Our modeling technique represents all the aforementioned database constructs as a 
directed graph G=( V, E) , which we call Architecture Graph of the ecosystem. Next, 
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we briefly present the components of the Architecture Graph. We start with the high 
level constructs, such as relations and queries, which we call modules of the 
Architecture Graph, and then we move on to discuss their main properties. 

Modules. A module is a semantically high level construct of the ecosystem; 
specifically, the modules of the ecosystem are (a) relations, (b) views, (c) queries. 
These modules are disjoint and they are connected through edges concerning provider 
or semantic-level relationships, as we shall see in the sequel.  

Every module defines a scope: within the scope of a module a subgraph of the 
Architecture graph is assumed. For example, the attributes and local (e.g., PK, 
NotNull,etc.) constraints of a relation live within the relation’s scope. A scope is 
nothing more than a set of part-of relationships that connect the component (which is 
expressed as a node) with its constituents. For reasons of clarity, we avoid referring to 
these relationships explicitly, unless this is absolutely necessary.  

Relations, R. Each relation R(Ω1,Ω2,…,Ωn)  in the database schema, either a table or 
a file (it can be considered as an external table), is represented as a directed graph, 
which comprises: (a) a schema node, R, representing the relation’s schema; (b) n 
attribute nodes, Ωi ∈Ω, i=1 .. n, one for each of the attributes; and (c) n schema 
relationships, ES, directing from the relation node towards the attribute nodes, 
indicating that the attribute belongs to the relation.  

Conditions, C. Conditions refer both to selection conditions, of queries and views 
and constraints, of the database schema. We consider three classes of atomic 
conditions that are composed through the appropriate usage of an operator op 
belonging to the set of classic binary operators, Op (e.g., <, >, =, ≤, ≥, != , IN , EXISTS, 
ANY): (a) Ω op constant ; (b) Ω op Ω’ ; and (c) Ω op  Q. (Ω, Ω’  are attributes of the 
underlying relations and Q is a query.)  

A condition node is used for the representation of the condition. Graphically, the 
node is tagged with the respective operator and it is connected to the operand nodes 
of the conjunct clause through the respective operand relationships, O. Composite 
conditions are easily constructed by tagging the condition node with a Boolean 
operator (e.g., AND or OR) and the respective edges, to the conditions composing the 
composite condition.  

Well-known constraints of database relations – i.e., primary/foreign key, unique, 
not null, and check constraints – are easily captured by this modeling technique. 
Foreign keys are subset relations of the source and the target attribute, check 
constraints are simple value-based conditions. Primary keys, which are unique-value 
constraints, are explicitly represented through a dedicated node tagged by their names 
and a single operand node.  

Queries, Q. The graph representation of a Select - Project - Join - Group By (SPJG) 
query involves: 

(a) a new node representing the query, named query node,  
(b) a set of input schemata nodes (one for every table appearing in the FROM 

clause). Each input schema comprise the set of attributes that participate in 
the syntax of the query (i.e., SELECT, WHERE clause, etc.) 

(c) an output schema node comprising the set of attributes present in the SELECT 
clause. 
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(d) a semantics node as the root node for the subgraph corresponding to the 
semantics of the query, and, 

(e) attribute nodes belonging  to the various input schemata and output schema of 
the query.  

The query graph is therefore a directed graph connecting the query node with the 
high level schemata and semantics nodes. The schema nodes are connected to their 
attributes via schema relationships. In order to represent the relationship between the 
query graph and the underlying relations, we resolve the query into its essential parts: 
SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY, each of which is 
eventually mapped to a subgraph.  

Select part. Each query is assumed to own an output schema that comprises the 
attributes, either with their original or with alias names, appearing in the SELECT 
clause. In this context, the SELECT part of the query maps the respective attributes of 
the input schemata to the attributes of the query’s output schema through map-select 
relationships, EM, directing from the output attributes towards the input schema 
attributes. 

From part. The FROM clause of a query can be regarded as the relationship 
between the query and the relations (or views) involved in this query. Thus, the 
relations included in the FROM part are combined with the input schemata of the query 
node through from relationships, EF, directing from the nodes of the appropriate input 
schemata towards the relation nodes. The input schemata of the query comprise only 
the attributes of the respective relations that participate in any way in the query; the 
attributes of the input schemata are connected to the respective attributes of the 
provider relations or views via map-select relationships. 

Where part. We assume that the WHERE clause of a query is in conjunctive normal 
form. Thus, we introduce directed edge, namely where relationships, Ew, starting from 
the semantics node of a query towards an operator node corresponding to the 
conjunction of the highest level.  Then, there is a tree of nodes hanging from this 
conjunction as previously described for composite constraints. The edges are operand 
relationships as mentioned above among binary comparators, Boolean operators, 
input attributes and constants. 

Group and Order By part. For the representation of aggregate queries, we employ 
two special purpose nodes: (a) a new node denoted as GB∈GB, to capture the set of 
attributes acting as the aggregators; and (b) one node per aggregate function labeled 
with the name of the employed aggregate function; e.g., COUNT, SUM, MIN. For the 
aggregators, we use edges directing from the semantics node towards the GB node that 
are labeled <group-by> , indicating group- by relationships, EG. The GB node 
comprises separate children nodes for all attributes acting as aggregators. These edges 
are schema relationships, which are additionally tagged according to the order of the 
aggregators; we use an identifier i  to represent the i-th aggregator. Each of these 
attribute nodes is connected with the respective input attributes with a <map-

select> edge. Moreover, for every aggregated attribute in the query’s output 
schema, there exists an edge directing from this attribute towards the aggregate 
function node as well as an edge from the function node towards the respective input 
attribute. Both edges are labeled <map-select>  and belong to EM, as these 
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relationships indicate the mapping of the query attribute to the corresponding relation 
attribute through the aggregate function node. 

The representation of the ORDER BY clause of the query is performed similarly. 

Functions, F. Functions used in queries are integrated in our model through a 
special purpose node Fi ∈F, denoted with the name of the function. Each function has 
an input parameter list comprising attributes, constants, expressions, and nested 
functions, and one (or more) output parameter(s). The function node is connected 
with each input parameter graph construct, nodes for attributes and constants or sub-
graph for expressions and nested functions, through an operand relationship directing 
from the function node towards the parameter graph construct. This edge is 
additionally tagged with an appropriate identifier i  that represents the position of the 
parameter in the input parameter list. An output parameter node is connected with the 
function node through a directed edge from the output parameter towards the function 
node. 

Views, V. Views are treated as queries; however the output schema of a view can 
be used as input by a subsequent view or query module. 

Summary. A summary of the Architecture Graph is a zoomed-out variant of the 
graph that comprises only of modules as nodes and edges denoting any possible form 
of provider relationship between modules. Formally, a summary is a directed acyclic 
graph Gs=( Vs, Es) , with Vs⊆R∪V∪Q comprising the graph’s module nodes and Es⊆EF 
comprising pairs of providers and consumers as from-relationship edges, EF.  

Example. The following example (Fig. 1) shows a small university database. The 
database contains information on semesters, standard, recurring data for the courses 
offered by a department, specific data for the courses offered by the department in a 
particular semester, as well as information for students and their transcript – i.e., what 
course they have enrolled to and with what grade. The names of the relations and their 
attributes are self-explanatory. 

On top of this database, we define two views and two queries. The first view, 
V_Course, combines three relations, Semester, CourseStd, and Course into a single 
view that contains both the identifiers and the descriptions of the involved entities. 
The second view, V_Tr, joins V_Course with the relation Transcript, resulting in a 
view that outputs all the information needed for every student’s enrollment. Then, we 
have two queries. The first query performs a self-join over view V_Tr and presents a 
report that compares the grades for two courses, DB_I and DB_II for those students 
who enrolled in both of them. The second query reports the average grade (i.e., over 
successfully passed courses) for every student; the report requires students’ names, so 
the relation Student is joined to the view V_Tr 

We have omitted all constraints (e.g., primary and foreign key) as well as map-
select edges from the figure to avoid overcrowding it. The map-select edges can be 
deduced from the names of the attributes 



 6

 

Fig. 1. Architecture graph of the Reference example
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2.2 Graph Annotation with Policies 

The presented graph model enables us to capture the various dependencies between 
the modules of the ecosystem at a most granular level. Apart from the simple task of 
capturing the semantics of a database ecosystem, the proposed graph model allows us 
to evaluate the impact of a change over the system. In [8] we have provided a subtle 
technique for mapping schema changes occurring at the database ecosystem to 
operations on the node of the graph (e.g., the addition of an attribute in a relation is 
mapped to an addition of a child node in the relation module). In addition, we have 
enriched the graph with rules, called policies that dictate the actions that are 
performed, when specific events occur on the nodes of the graph. Policies can be 
applied at various granularity levels on the graph, i.e., from the module level down to 
the level of attributes and operand nodes, ensuring that the reaction to events for all 
nodes in the graph [9]. Two kinds of rules are defined with respect to the semantics 
incurred by an event, (a) propagate the change, meaning that the graph must be 
reshaped to adjust to the new semantics incurred by the event; and (b) block the 
change, meaning that we want to retain the old semantics of the graph and the 
hypothetical event must be blocked or, at least, constrained, through rewriting that 
preserves the old semantics. For instance, the policy “On add_attribute  to 
Transcript  Then propagate ” defined on V_Tr.INS_T  node dictates the 
propagation of the addition of a new attribute in the Transcript  relation towards the 
schema of the view. Simple default values and policy resolution rules can safely 
guarantee that all nodes can determine the appropriate policy for any event they 
receive. We refer the interested reader to [8], [9] for a thorough discussion. 

2.3 Message propagation and Status Resolution 

Whenever a hypothetical event over a node (e.g., the deletion of an attribute) is 
submitted to the graph, the system must ensure that (a) the event is propagated to all 
the nodes that are affected directly or transitively, (b) each of the affected nodes 
acquires the correct status, according to its annotation with policies for this event.  

Policy Determination. Clearly, it would be very hard for the user to have to define 
a policy per event for every module of the Architecture Graph. In [9], we have 
defined a language where the user can dictate “default” policies both at the graph 
level and for the children of individual nodes, in order to avoid this effort. In fact, the 
language allows the user to define policies at different levels of abstraction which can 
be overriding one another (so, for example, if the default policy for the deletion of 
input schema attributes is block, the user can override it for the input schema 
attributes of a particular view). Then, a late-binding mechanism determines the 
winner policy for each specific node. For a most detailed description of the policy 
annotation and determination, we refer the interested user to [9]. 

Status Determination. Status determination stems from the simple application of 
rules. Given a finite vocabulary of events, VE, a finite vocabulary of policies VP and a 



 8

finite vocabulary of statuses VS, the only thing that we need is a set of rules as 
function DS: VE x VP -> VS.  

Table 1.  Vocabularies for events, policies and statuses of nodes  

VE {SELF, CHILD, PROVIDER} x {ADD, DEL, UPD} x {STRUCTURE, SEMANTICS, S+S} 

VP {BLOCK, PROPAGATE} 

VS {SELF, CHILD, PROVIDER} x {ADD, DEL, UPD} x {STRUCTURE, SEMANTICS, S+S } 

Table 1 explains that the events for which a node is notified state that either itself, 
or one of its children (e.g., a relation’s attribute, or an attribute’s constraint) or a 
provider is affected (by addition, deletion or update) with respect to its structure, 
semantics or both. The policies are either Block (which dictates that the event is 
practically vetoed at the node’s scope) or Propagate. Lastly, the statuses assigned can 
have a scope indicating whether the impact of the event refers to the node itself, its 
ancestors within a module or its provider nodes. 

Event propagation. The third part of the mechanism is the broadcasting of 
messages to the neighbors of a node that acquires a status for an event. Each message 
corresponds to a unique event occurring on the sender node and describes the event 
type and the status assigned to it according to the prevailing policy. Each message is 
processed locally, inside a module and may trigger one or more events for further 
propagation to the consumer modules.  

For example, the deletion of an attribute that participates in the SELECT and 
WHERE clauses of a view, generates a new message for the consumers of the view; 
this message encodes the modification of the view’s structure and semantics. 

3. Message propagation mechanism 

At the high level, the graph nodes form a directed acyclic graph of dependencies. 
Thus, it is straightforward to obtain a topological sorting of the summary of the 
architecture graph. We can easily enforce the rule that “modules communicate with 
each other via a single means: the output schema of a provider module notifies the 
input schema of a consumer module”. In such cases, the following protocol is used: 

(i) We topologically sort the graph at the module level. 
(ii)  We visit each module with its topological order and we check whether there 

are incoming messages for it. If this is the case, the topological sort guarantees 
that all messages pending for the input schemata of the module are ready. 

(iii)  Every module processes locally the incoming events and also, locally decides 
the status for its semantics and output schema. Next, it is ready to propagate 
this information to all its consumers (if any). 

We examine, now, the protocol for handling of the events within each module as 
well as the structure and contents of the outgoing message to the consumer nodes of 
an affected node; this is the topic of this section. 

There are four kinds of nodes involved in the propagation mechanism. 
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– Input schemata nodes, which are the kind of nodes that receive 
notifications for changes from other modules. 

– Internal nodes, which are: (a) possibly affected by the changes to the nodes 
of the input schema and (b) amenable to evolution events by the users (e.g., 
a user altering the selection condition or the grouper attributes of a view). 

– Output schema nodes, which are the only nodes who emit messages to their 
consumer modules for the possible modification of their component. 

– Semantics nodes, which determine whether the semantics of a component 
are the same or not and inform the output schema nodes for further 
propagation. 

The requirements that we want to address regarding the message handling within a 
module are that each event must affect the appropriate nodes and that every node 
must be visited and processed (i.e., its status must be determined) once per message. 
Hence, we introduce a process mechanism with the following characteristics: 

 (a) Messages arriving at a node are propagated to all of its consumers (i.e., 
adjacent nodes connected with an incoming edge to this node) according to the type 
of event that they encode (e.g., the addition of an attribute is propagated only to 
semantics and output nodes, whereas the deletion of an attribute is propagated to 
attribute nodes). We describe this mechanism in the following sections. 

(b) For each event initiated by the input schema or the user, we identify the 
affected subgraph of the module according to the protocol mechanism as described in 
the following sections. For identifying the subgraph, we process each event by 
executing the protocol mechanism and assuming that no policies constrain the 
flooding process. The produced subgraph contains only these nodes potentially 
affected by this event. 

(c) Given that each identified subgraph is acyclic (see theorem 3), we again 
perform a second execution of the protocol, starting from the input schema (or the 
node affected explicitly by the user) and visiting each node in a topological order of 
the subgraph. According to the policy defined, an event processed on a node generates 
one or more messages, which are enqueued in the message list of all of its consumers. 
The next node to be processed is the next in the topological order of the identified 
subgraph. The mechanism guarantees that each node is processed once, after all 
possible messages have arrived at it.  

Next, we present the message handling mechanism for each class of nodes. The 
general structure of the event propagation mechanism is presented in Figure 2. 
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Fig. 2. Event propagation mechanism within modules 

Input schema nodes. An input schema receives messages from the output schema 
nodes of the providing relation / view containing occurred events on the provider’s 
structure or semantics. For instance, the output schema of a relation module can report 
the following events to the input schema node of a query accessing this relation: 

(a) The relation is renamed or deleted. 
(b) Attributes are added/ deleted / updated (renamed or modified). 
(c) Constraints are added/ deleted / updated (renamed or modified). Events 

occurred on relation constraints eventually generate messages stating the 
semantic change of the relation. 

For any of the above events a message is constructed and received by all input 
schema nodes accessing the relation. The detail mechanism that is triggered by the 
input schema node when receiving such a message is as follows: 

(i) The correct policy (based on the type of the received message) is determined 
for the receiving input schema node. 

(ii)  The rule dictating the policy is fired and the appropriate status is assumed. In 
the case of propagation, the node assumes a status for adjusting to the event, 
whereas in the case of block policy, the node takes a status for blocking the 
event. For example, in the case of an incoming message for the addition of a 
new attribute, for which the input schema retains a propagate policy, the input 
schema node is assigned with a status for adding a child. 

(iii)  For events referring to the input attributes (e.g., deletion of an attribute at the 
provider’s schema, renaming, domain modification, etc.) the appropriate input 
attribute nodes of the input schema are notified. 

(iv) The input schema node propagates a message containing changes on the 
semantics of the provider module directly to the semantic node of the current 
module – if such changes exist; otherwise no such action is taken. 
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(v) The input schema node propagates a message for addition of children towards 
the output schema node of the module and (if any) to the group by node via the 
semantic node. 

Observe that each input schema has exactly one provider (i.e., the output schema of 
the provider module. Hence, it can receive exactly one message that triggers the 
evolution handling mechanism in every module. In other words, a module can 
receive, at most, as many event handling messages for the same original event as its 
input schemata. An alternative way to start the mechanism is by a user applying a 
change at the module, which again triggers exactly one “input” message possibly at 
an internal node. 

Internal nodes. These can be either attributes in the input/ output schemata of a 
module, or logical components of the semantics node of a module, like a function 
node, an operand or a constant node, group by node, etc. 

Intra-module nodes can receive messages either from (a) their father (e.g., an input 
schema node notifies that a specific input attribute must be deleted), (b) from their 
provider nodes (e.g., an output attribute node or an operand node is notified by its 
provider attribute in the input schema for its deletion), (c) one of its children or lastly 
(d) explicitly by the user who triggers the modification of the node itself. 

The message propagation for the nodes of this category mainly notifies all their 
consumers on what is happening to them as well as notifying the semantics node on 
whether the semantics of the component change. Therefore, the mechanism for each 
such node is as follows: 
  (i) – (ii) The first two steps are like those of the input schema nodes. 

(iii)  If the node has children and receives a notification from its father or if it 
initiates the event, then its children are notified too. This mainly applies to 
operand nodes in composite conditions at views and queries or relations’ 
attributes having constraints (e.g., conditions) as children. 

(iv) If the node notified by one of its providers or one of its children, the father of 
the node is notified, too. This covers the case where a user triggers an event in 
the contents of a view (e.g., deletion of a condition) or a relation (e.g., 
modification of an attribute), so that the event would be also propagated 
upwards to the module node. 

(v) In all cases, the node consumers (if any) are notified too. This covers the case 
where an input attribute is changed, so that the event is propagated towards all 
nodes (i.e., output attributes, conditions, functions, group by attributes) that 
refer to this attribute. 

Observe that this way, every node notifies its consumers, and every node does not 
receive a message for the same event more than once per edge. The key here is that 
there is a flow of the messages, either from an ancestor node towards its descendants, 
or from an intermediate node towards both its ancestors and its descendants. Since 
cycles do not exist, every node receives each message exactly once, except for binary 
nodes (e.g., ‘=’ or ‘AND’ nodes in constraint trees that might receive a status from 
both their edges). However, due to the topological sorting of the tree, if an 
intermediate node in the semantics tree receives a first notification from one of its two 
edges, it is possible to check whether another notification is also pending before 
deciding its final status. At the end of this process, the semantics node receives one 
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message (either a contingency blocking veto, or a propagation message) for a 
potential change in the subtrees of the Where or the Group By nodes. 

Semantics nodes. A semantics node receives messages either from the input 
schema of the module for messages containing changes on the semantics of the 
provider modules or from its children. The mechanism that is triggered by the 
semantics node when receiving such messages is as follows: 
  (i) – (ii) The first two steps are like those of the input schema nodes. 

(iii)  The semantic node propagates a message for addition of children towards (if 
any) the group by node. 

(iv) The semantics node propagates all other messages coming from either the 
input schema node (e.g., for changes in the semantics of a provider module) or 
its children (i.e., for changes in the semantics of the module itself) to the 
output schema node of the module. 

Output schema nodes. The output schema is responsible for establishing the 
overall status of the module. An output schema node can receive messages from the 
semantics node regarding semantic changes in the module, from the input schema for 
additions of attributes or from one of its children for changes referring to the exposed 
structure of the module. The following mechanism is applied for handling a received 
event signal: 
  (i) – (ii) The first two steps are like those of the input schema nodes. 

(iii)  The father of the output schema node, i.e., the module’s node, is notified too. 
Whenever the module’s node gets a notification from the output schema it 
acquires the right status (i.e., block if a veto has been fired or the appropriate 
status in any other case). 

(iv) Except for the case the assigned status is block, all consumers (input schemata) 
of the output schema node are notified with a message announcing the 
module’s status 

Table 2: Overview of message propagation for each kind of node in a module 

Messages arrive from Type of 
node 

Messages propagated to 

{provider’s output schema} Input 
schema 

{children, semantics, output 
schema} 

{father, provider, children, user(self)} Internal 
Nodes 

{children (if any), consumers, 
father} 

{input schema, children} Semantics {output schema} 
{semantics, children, input schema} Output 

schema 
{consumers’ input schema, module} 

 

Example: We, illustrate the propagation mechanism by examining two specific 
evolution events on the graph of Fig.1: (a) the addition of a new attribute to the 
Transcript  relation, namely ExamYear , that represents the year that the student has 
taken the exam on each course and (b) the removal of attribute MDescr  from the 
select clause (i.e., output schema) of V_Course  view. We assume that both changes 
are explicitly invoked by the user and for each of them, we hold the nodes that are 
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visited by the algorithm, the kind of messages that arrive to these nodes, the status 
that is assigned on them, the messages that they emit and lastly the forward nodes that 
they inform. We, also, assume that propagate policy is assigned on all visited nodes 
and thus termination of the mechanism is not caused by a block policy. 

(a) Addition of ExamYear (EY) attribute to Transcript table: The 
message propagation for this event is presented in Table 3. The message for the 
addition of EY on the Transcript  node, results in assigning the appropriate 
status for adding EY as a new child. Since the policy is propagate, an identical 
message is created and the input schema node V_TR.INS_T  connected with the 
Transcript  node is visited. The V_TR.INS_T  node adapts the event and 
informs the output schema node for the addition. The affected subgraph for this 
event according to our mechanism comprises nodes {V_TR.INS_T, 

V_TR.OUT_S,V_TR} which are visited in this order.  
The V_TR.OUT_S node propagates, in turn, the event towards all input schema 
nodes referring to the V_Tr  view. For the Q_pass 2courses  (Q1) query, each 
input schema node (i.e., Q1.INS_V2  and Q1.INS_V1 ) receives a distinct 
message for the attribute addition. These messages are propagated towards the 
query output schema Q1.OUT_S as two separate events. The message 
propagation terminates on the output schema nodes of the two queries (see Figure 
1 too), Q1.OUT_S and Q2.OUT_S, as no other consumer modules exists. The 
output schema of the Q_allStudentsGPA  (Q2) query, receives two messages for 
two separate events; one for the addition of the attribute in the input schema of 
the query and the other for the modification of the semantics as result of the 
incorporation of the new attribute to the group by clause of the query. 

Table 3: Message Propagation for the addition of ExamYear  to table Transcript 

visited 
module 

Visited 
Node 

message 
arriving 

Status message  
emitted 

next node 
in queue 

Transcript Transcript AC {EY}  To_AC AC {EY} V_TR.INS_T 
V_TR INS_T AC {EY} To_AC AC {EY} OUT_S 

 OUT_S AC {EY} To_AC AC {EY} {V_TR 
Q1.INS_V1,Q1.INS_V2,Q2.INS_V}  

 V_TR AC {EY}  To_AC none None 
Q1 INS_V1 AC {EY} To_AC AC {EY} OUT_S 

 INS_V2 AC {EY} To_AC AC {EY} OUT_S 
 OUT_S AC {EY} To_AC AC {EY} Q1 
 Q1 AC {EY} To_AC AC {EY} None 

Q2 INS_V AC {EY} To_AC AC {EY} {SMTX, OUT_S} 
 SMTX AC {EY}  To_MS AC{EY},MS  {GB, OUT_S} 
 GB AC{EY},

MS 
To_AC AC{EY} None 

 OUT_S AC{EY},
MS 

To_AC, 
To_ MS 

AC{EY}, 
MS 

Q2 

 Q2 AC{EY}, 
MS 

To_AC, 
To_ MS 

none None 

Legend: AC: Add_Child,Q1: Q_pass2courses, Q2: Q_allStudentsGPA, MS: Modify_Semantics 
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Table 4: Message Propagation for the deletion of MDescr from V_Course view 

visited 
module 

visited 
node 

message 
arriving 

status message  
emitted 

next node 
in queue 

V_Course MD DS To_DS DS OUTS 
 OUTS DS To_DC DC{MD} V_TR.INS_VC 

V_TR INS_VC DC{MD} To_DC DC{MD} INS_VC. MD 
 INS_VC.MD DC{MD} To_DS DS OUT_S. MD 
 OUT_S.MD DS To_DS DS OUT_S 
 OUT_S DS To_DC DC{MD} V_TR 
 V_TR DS To_DC DC{MD} none 

Legend: DS: Delete_Self, DC: Delete_Child, MDescr: MD 
 

(b) Deletion of attribute MDescr from V_Course view. The removal of attribute 
MDescr(MD) from the select clause of V_Course  view starts on MDescr node 
of output schema node V_Course.OUT_S (Table 4). The message is first 
propagated towards its father, namely V_Course.OUT_S , which is assigned with 
a status for deletion of one of its children, and then input schema node 
V_TR.INS_VC  is informed about the deletion. V_TR.INS_VC  is assigned with 
the same status and propagates the message to the specific child node to be 
deleted. Attribute MDescr of V_TR.INS_VC  informs, in turn, the consumer 
attribute belonging in the output schema of the view. The propagation terminates 
on the output schema node V_TR.OUT_S since no other consumers exist for the 
specific attribute. 

4. Theoretical Guarantees 

In this section, we present the theoretical guarantees for the correct execution, 
termination and confluence of the aforementioned protocol mechanism on the 
architecture graph. We examine and prove these properties both at the summary 
graph, i.e., at the intermodule level (theorems 1-3), as well as within each module 
(theorem 4).  

4.1 Guarantees at the intermodule level 

In this subsection, we prove that the mechanism for message propagation works 
correctly at the summary or, intermodule level. We assume that each module responds 
correctly to a given event; we prove this property in the subsequent subsection. 

 Theorem 1 (termination). The message propagation at the intermodule level 
terminates.  

Proof: The summary of the Architecture Graph is a directed acyclic cycle.  This is 
due to the fact that a query depends only on views and relations and relations do not 
depend on anything (in the context of this paper, we do not consider cyclic foreign 
key dependencies). Since the summary graph is a DAG, we can topologically sort it 
and propagate the messages according to this topological order.  Thus, all that it takes 
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for the message propagation mechanism to terminate is: (a) each module emits at 
most one message for each session to every one of its neighbors; (b) the graph is 
finite. Since both assumptions hold, the algorithm terminates.           � 

Theorem 2 (unique status). Each module in the graph will assume a unique status 
once the message propagation terminates. 

Proof: At the summary level, each input schema of a consumer module receives 
the status and the output schema structure of its provider module. The topological 
ordering of the graph guarantees that whenever a module is considered, all its 
providers have already been processed. So, all that remains is to prove that once all 
notifications from the module’s providers are in place, the module will uniquely 
acquire a status. This is proved in Theorem 4.            � 

Theorem 3 (correctness). Messages are correctly propagated to the modules of the 
graph. 

Proof:  The modules that must be appropriately notified are these for which an 
event occurs at their providers. From definition, at the summary level the Architecture 
graph is a connected graph, where one (or more) input schema node(s) of a consumer 
module is connected via directed edges to the output schema node(s) of its providers. 
The messaging mechanism dictates that each message is propagated from the output 
node of the provider module towards the input schema node of all consumer modules, 
unless a block policy explicitly halts the propagation. Thus, the connectivity of the 
graph assures that the modules, which are eventually visited by the message 
propagation mechanism, have at least one of their providers affected. On the other 
hand, the modules that are not visited by the mechanism (a) either do not have any 
provider affected or (b) a block policy exists; therefore, they can safely ignore any 
notification.                      � 

4.2 Guarantees at the intramodule level 

In this subsection, we prove that once an event arrives at a module, the module 
responds to the event and annotates the output schema with the correct status. 

Theorem 4 (termination and correctness). The message propagation at the 
intramodule level terminates and each node assumes a status. 

Proof:   At the intra-module level, for the termination of the mechanism, we must 
prove that each constructed subgraph per event type is a directed acyclic graph. For 
the correctness of the mechanism we require that every node is processed once (and 
thus assigned with a status) for all messages arriving at a module per session. The 
latter can be satisfied when the determined subgraph can be topologically sorted and 
traversed. Thus, for both requirements we must prove that the subgraph that is 
constructed per event type has no cycles. We cover the following types of messages 
arriving at the module: 
• Change in semantics of provider: the message arrives to the input schema 

node and is propagated to the semantics node. The affected subgraph 
comprises the following nodes and directed edges in topological order:  



 16

{input schema �semantics �output schema �module} 1. No cycles detected. 
• Internal change in the semantics of a module (e.g., a user deletes a part of the 

condition expression of a view): the semantics node is eventually notified 
from the upwards flow of messages in the semantics tree and the children are 
notified from the downwards flow of messages.  
o For the case that a condition node is modified, subgraph comprises  

{internal node �up condition tree �semantics �output schema �module} , 
{internal node �down condition tree} . No cycles detected. 

o For the case that a grouping attribute is modified, subgraph comprises:  
{GB Attributes �GB�semantics �output schema �module}  

• Deletion in the structure of the input schema: all affected nodes in the tree of 
the condition part are notified via the operand relationship edges; all group 
by and output schema are notified via the map-select edges. Subgraph 
potentially (if group by part exists) comprises: 
{input schema �input attributes},  
{input attributes �condition tree �semantics},  
{input attributes �GB attributes �GB node�semantics},  
{input attributes �output attributes �output schema} 
{semantics �output schema} and  

{output schema �module} . No cycles detected. 
• Addition in the structure of the input schema: a message is sent to the output 

schema and to the semantic node for informing the group by node (if any). 
Subgraph potentially comprises: 
{input schema �semantics}, 
{input schema �output schema}, 
{semantics �GB node}, 
{semantics �output schema}, 

{output schema �module}.  No cycles detected 
• Deletion of in the input schema overall (the provider dies overall too): the 

deletion is correctly propagated from the messages sent by all the child 
nodes of the schema. 

• Change in structure (deletion or addition) and semantics of a provider. When 
messages arriving at an input schema node contain changes both at the 
structure and the semantics of the provider module, the subgraph is the union 
of the subgraphs corresponding to each case. Thus, for attribute addition and 
change in provider semantics, the subgraph is: 
{input schema �semantics}, 
{input schema �output schema}, 
{semantics �GB}, 

{semantics �output schema �module} . No cycles detected 
For attribute deletion and change in provider semantics, the subgraph is: 
{input schema �semantics}, 
{input schema �input attributes},  
{input attributes �condition tree �semantics},  
{input attributes �GB attributes �GB node�semantics},  

                                                           
1 For ease of graph serialization we denote an edge directing from input schema towards 

semantics as “input schema�semantics”. 
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{input attributes �output attributes �output schema} 
{semantics �output schema} and  

{output schema �module} . No cycles detected 
 
In all cases, at the end of the process, the output schema (and eventually the module 
itself) has knowledge (a) of what happens to their children and (b) what happens to 
module and can pass this information to the next consumer.                     � 

Theorem 4 dictates that all nodes at the intramodule level will be processed once 
and assigned with a status. The processing order is predetermined by the type of event 
arrived at the module and the propagation mechanism terminates at the module node, 
which denotes the overall status of the module.  

The status assigned to each node is determined by the type of node, the type of 
event encoded in the message arriving at the node and the type of policy defined on 
the node; thus, if only one message arrives at a node, a unique status can be easily 
determined. However, in the case that a node receives two or more messages (i.e., 
from many providers) containing different events, a unique status must first be 
resolved for these different events and then propagated to next nodes. In the next 
proposition we show that all internal nodes eventually obtain a unique status per 
session, regardless of the number of different messages arriving at them. 

Proposition 1 (unique status). All internal nodes visited by the algorithm will 
obtain a unique status according to the defined policy and the types of events encoded 
in the received messages. 

Proof:    We distinguish the following types of nodes: input schema node, input 
attributes, semantics node, GB node, grouping attributes, nodes in condition tree 
(condition nodes and constants), output attributes, output schema node and lastly, 
module node. According to theorem 4, for all cases of events, the types of nodes 
which can potentially receive two or more different messages in a single session are 
the output schema and the semantics nodes. All other nodes have either one provider 
in each subgraph derived by the mechanism (e.g., in the case of attribute addition the 
GB node receives a message from the semantics node, whereas for attribute deletion it 
receives a message from one of the grouping attributes), or multiple arrived messages 
are of the same type (e.g., a condition node receives two messages for the deletion of 
both operand nodes). Unless the policy defined on the node is block (the status is 
always resolved as block), the status is uniquely determined according to the type of 
event. A semantics node however can receive at the same time a message from the 
input schema (e.g., for a change in the providers’ semantics or the addition of an 
attribute) and one or more messages from its children (e.g., for the deletion of a 
condition or a grouping attribute). In all cases the resolved status for propagate policy 
is the same, namely “to modify semantics”, and thus no ambiguous statuses can be 
assigned to the semantics node. Output schema, on the other hand, can potentially 
receive a message from the input schema for attribute additions, a message from the 
semantics node for the update of the module semantics, and a message from its 
children for the deletion of an output attribute. For propagate policy, the resolved 
status depends on the received message and can denote modification in semantics, 
structure or both (e.g., “to modify semantics and add attribute X”, or “to modify 
semantics and delete attribute Y”, etc.). In all cases, statuses are uniquely identified in 
all nodes within a module, regardless of the number of messages received. 
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5. Related Work 

Schema evolution is a long-term problem in database research, addressed each time 
under the specific characteristics and operations of the approached data model. In [11] 
one of the earliest surveys on schema versioning and evolution is presented, whereas 
a categorization of the overall issues regarding evolution and change in data 
management is presented in [10]. Evolution related approaches have been also 
proposed for the OO paradigm [13] and DW configurations [3, 4], as well. Relational 
schema evolution and versioning are revisited in [5], where the authors introduce a 
technique for publishing the history of a relational database in XML, employ a set of 
schema modification operators (SMOs) to represent the mappings between successive 
schema versions and an XML query language to efficiently address queries expressed 
over different versions using the mappings established by the SMOs. 

Related to our approach, the problem of view adaptation after redefinition is 
mainly investigated in [1, 2] where changes in views definition are invoked by the 
user and rewriting is used to keep the view consistent with the data sources. Also, [5] 
deals with the view synchronization problem, which considers that views become 
invalid after schema changes in their definition. The authors extend SQL, enabling the 
user to define evolution parameters characterizing the tolerance of a view towards 
changes and how these changes will be dealt with during the evolution process. In this 
context, our work can be compared with that of [5] in the sense that policies act as 
regulators for the propagation of schema evolution on the graph similarly to the 
evolution parameters introduced in [5].  In [12] a similar framework for the 
management of evolution is proposed. Still, the model of [12] is more restrictive, in 
the sense that it is intended towards retaining the original semantics of the queries by 
preserving mappings consistent when changes occur. Our work is a larger framework 
that allows the restructuring of the database graph (i.e., model) either towards keeping 
the original semantics or towards its readjustment to the new semantics. In addition, 
we employ a detail representation and a message propagation mechanism for 
detecting and regulating evolution impact in complex database ecosystems.   

Our rule-based propagation of schema evolution changes in architecture graphs 
shares some common characteristics with problems related to the definition and 
management of active rules in database systems. We mention the work presented in 
[14], where the authors formulate the problems of termination, confluence and 
observation in active database rules. Given a set of active rules, the authors provide 
formal methods for evaluating whether the execution of this set terminates, produces a 
unique final database state, or finally produce a unique stream of observable actions 
regardless of the rules’ execution order.   

6. Conclusions 

In this paper, we focused on the problem of change propagation in database 
ecosystems. Based on a graph representation of database constructs and considering 
that this graph can be annotated with policies dictating the response of a software 
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module to a possible event, we investigated the impact of such events to the database 
and presented a graph-based mechanism to control propagation of events.  
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