Propagation of Evolution Events
in Architecture Graphs

George Papastefanatp®anos VassiliadisAlkis Simitsis

1IMIS-Athena, Athens, Hellas
gpapas@imis.athena-innovation.gr
2 Univ. of loannina, Dept. of Computer Science, 451&8nnina, Hellas
pvassil@cs.uoi.gr
3 HP Labs, Palo Alto, CA, USA
alkis@hp.com

Abstract. The success and wellbeing of large organizatietysan the smooth
functionality and operability of their software. @u qualities are largely
affected by evolution events and changes. In thjgep we are dealing with
handling evolution events in data management systdm particular, we
consider a data-centric ecosystem that capturesiaedl tables, along with
their schemata and constraints, as well as, viesfiset on top of them and
queries (being parts of software modules that éinereinternal to the database,
e.g., stored procedures, or external software egfmins that access the
database). We also consider policies that dictaterésponse of a software
module to a possible event. We investigate the @npé such events to the
database and present a graph-based mechanism tmlcpropagation of
events. We formally show that this mechanism teateis and that every
database construct is annotated with a singlesstatgardless of the sequence
of messages that the node receives.

Keywords: database evolution, confluence, event propagation.

1. Introduction

The success and wellbeing of large organizatiolysare the smooth functionality and
operability of their software. Such qualities asegkly affected by evolution events
and changes. The problem we are dealing with ;ighper involves the identification
and regulation of schema evolution impact in complata-centric ecosystems and
can be summarized as follows.

We start with the Architecture Graph of a data-gentcosystem that captures
relational tables, along with their schemata anustraints, as well as, views defined
on top of them and queries (being parts of softwaoelules that are either internal to
the database, --e.g., stored procedures, or ekteoftavare applications that access
the database). Evolution changes affecting thebdatastructure are mapped to graph
operations on the nodes of Architecture graph. Thiee graph is annotated with
policies that dictate what is the response of answé module to a possible event

(e.g., when one of the database’s tables thatasctas provider of a view is to be
deleted, the view can be annotated with a poliay Wietoes the deletion).

Having this background we test the impact of a ptiséevent to the graph. The
main mechanism for achieving that is message paijmag every time a node
receives an event, it (a) determines which poligles apply for this event, (b)
assumes the appropriate status based on theseantkéc) notifies its neighbors for
the event (if necessary) via the appropriate messdlgat act as events to their
recipients. Hence, when a potential event is subdithe graph must be annotated
with statuses that report on whether an evenfiéstifig a node or not, and in the case
that it does, what is the actual action to be taf@nthe affected node. Actions
imposed on affected nodes may in turn generateutonl events that are propagated
as new messages towards the rest of the depenaiht gfructures.

Therefore, briefly, we work as follow&iven an evolution event e over a node of
the Architecture Graph v, how do we guarantee {aatthe propagation of events
terminates and (b) that every node is annotatetl wisingle status, regardless of the
sequence of messages that the node receives?

A first attempt to the problem can be found in [Bpwever, that attempt focuses
on a simpler data model that did not prevent migitipessages arriving at the same
node and, due to this shortcoming, it cannot guaeagonfluence of the evolution
process. Here, we solve this issue by framing chamgssages within high level
constructs (such as views) before they are frdeyded over the whole ecosystem’s
graph. The benefits of this process are as follows achieve localization of
decisions and guarantee satisfactory handling efietvansactions. Working like this,
we are also able to achieve nice properties, likdlaence.

Outline. The rest of the paper is structured asofed. Section 2 discusses
modeling issues. Section 3 and 4 present the megsapagation mechanism and
some theoretical results, respectively. Sectionigusses the related work and
Section 6 concludes the paper.

2. Background Modeling

In this section, we built upon our model of thehaecture graph [7] and extend it in
order to guarantee a safe, confluent mechanisnm&ssage propagation. Here, we
briefly present its main modeling components anghlight how this model is
extendedIn a nutshell, the main difference witA lies in the structure of views and
gueries: here, views and queries are containeraafes, encapsulated between the
input schemata and the output schema of a viewyguereviously, we did not
consider the input and output schemata as firssaéizens of our model.

2.1 Architecture Graph

Our modeling technique represents all the aforeimead database constructs as a
directed graplG=(V, E), which we callArchitecture Grapltof the ecosystem. Next,

we briefly present the components of the Architext@Graph. We start with the high
level constructs, such as relations and querieschwive call modules of the
Architecture Graph, and then we move on to disthsis main properties.

Modules. A moduleis a semantically high level construct of the estsy,;
specifically, the modules of the ecosystem arergigtions, (b) views, (c) queries.
These modules are disjoint and they are connehbteddh edges concerning provider
or semantic-level relationships, as we shall sébersequel.

Every module defines a scope: within the scope afcgule a subgraph of the
Architecture graph is assumed. For example, thebatés and local (e.g., PK,
NotNull,etc.) constraints of a relation live withthe relation’s scope. A scope is
nothing more than a set of part-of relationshigg ttonnect the component (which is
expressed as a node) with its constituents. Feoreaof clarity, we avoid referring to
these relationships explicitly, unless this is sy necessary.

Relations, R. Each relatiorR(Q;,9,,..,Q,) in the database schema, either a table or
a file (it can be considered as an external talide)epresented as a directed graph,
which comprises: (a) achema nodeR, representing the relation’s schema; (b)
attribute nodesq; €@, i=1 . n, one for each of the attributeand (c)n schema
relationships Es, directing from the relation node towards the ilattie nodes,
indicating that the attribute belongs to the relati

Conditions, C. Conditions refer both teelection conditionsof queries and views
and constraints of the database schema. We consider three clafsedomic
conditions that are composed through the appreprisgage of an operatap
belonging to the set of classic binary operatoss(e.g.,<, >, =, <, 2, I=, IN, EXISTS,
ANY): (@) @ op constant ; (b) 2 op @' ; and (C)e op Q (@, @ are attributes of the
underlying relations an@Qis a query.)

A condition nodes used for the representation of the conditiorapBically, the
node is tagged with the respective operator aigldbnnected to theperand nodes
of the conjunct clause through the respectiperand relationshipsO. Composite
conditions are easily constructed by tagging thaditmn node with a Boolean
operator (e.g.ANDor OR and the respective edges, to the conditions cempdhe
composite condition.

Well-known constraints of database relations - pemary/foreign key, unique,
not null, and check constraints — are easily capgtusy this modeling technique.
Foreign keys are subset relations of the source thedtarget attribute, check
constraints are simple value-based conditions. &sirkeys, which are unique-value
constraints, are explicitly represented througledichted node tagged by their names
and a single operand node.

Queries, Q The graph representation of a Select - Projéotn - Group By (SPJG)
guery involves:

(&) a new node representing the query, namesty node

(b) a set ofinput schemata nodg®ne for every table appearing in the FROM
clause). Each input schema comprise the set dbuattts that participate in
the syntax of the query (i.6SELECT, WHERElause, etc.)

(c) anoutput schema nodeomprising the set of attributes present inSBeECT
clause.

(d) a semanticsnode as the root node for the subgraph correspgnidinthe

semantics of the query, and,

(e) attribute nodedelonging to the various input schemata and digpliema of

the query.

The query graph is therefore a directed graph adimgethe query node with the
high level schemata and semantics nodes. The schedes are connected to their
attributes viaschema relationshipsn order to represent the relationship between th
query graph and the underlying relations, we resthe query into its essential parts:
SELECT, FROM WHERE GROUPBY, HAVING and ORDERBY, each of which is
eventually mapped to a subgraph.

Select part Each query is assumed to own @rtput schemahat comprises the
attributes, either with their original or with adianames, appearing in tf8£LECT
clause. In this context, tlRELECTpart of the query maps the respective attribufes o
the input schemata to the attributes of the querytput schema throughap-select
relationships E,, directing from the output attributes towards tinput schema
attributes.

From part The FROM clause of a query can be regarded as the relatpnsh
between the query and the relations (or views) lira in this query. Thus, the
relations included in thEROMpart are combined with the input schemata of thery)
node throughrom relationshipskg, directing from the nodes of the appropriate input
schemata towards the relation nodes. The inputnsatseof the query comprise only
the attributes of the respective relations thatigipate in any way in the query; the
attributes of the input schemata are connectedhéoréspective attributes of the
provider relations or views viaap-selectelationships.

Where part We assume that th@HERElause of a query is in conjunctive normal
form. Thus, we introduce directed edge, namehgre relationshipsg,, starting from
the semantics node of a query towards an operatde rcorresponding to the
conjunction of the highest level. Then, there ize® of nodes hanging from this
conjunction as previously described for compositestraints. The edges are operand
relationships as mentioned above among binary coatgra, Boolean operators,
input attributes and constants.

Group and Order By partFor the representation of aggregate queries,mgoy
two special purpose nodes: (a) a new nddeoted assB=GB, to capture the set of
attributes acting as the aggregators; and (b) ode per aggregate function labeled
with the name of the employed aggregate functiog;, EOUNT SUM MIN. For the
aggregators, we use edges directing from the sérsamide towards theBnode that
are labeled<group-by> , indicating group- by relationships E;. The GB node
comprises separate children nodes for all attribatding as aggregators. These edges
areschema relationshipsyhich are additionally tagged according to theeoraf the
aggregators; we use an identifierto represent the i-th aggregator. Each of these
attribute nodes is connected with the respectiautinattributes with a<map-
select> edge. Moreover, for every aggregated attribute he tjuery’s output
schema, there exists an edge directing from thisbate towards the aggregate
function node as well as an edge from the functiode towards the respective input
attribute. Both edges are labelednap-select> and belong toE, as these

relationships indicate the mapping of the quersilatte to the corresponding relation
attribute through the aggregate function node.

The representation of ti@RDERBY clause of the query is performed similarly.

Functions, F. Functions used in queries are integrated in oadehthrough a
special purpose nodg eF, denoted with the name of the function. Each fiemchas
an input parameter list comprising attributes, tams, expressions, and nested
functions, and one (or more) output parameter(fe function node is connected
with each input parameter graph construct, nodegtfabutes and constants or sub-
graph for expressions and nested functions, thraugbperand relationship directing
from the function node towards the parameter graphstruct. This edge is
additionally tagged with an appropriate identifiethat represents the position of the
parameter in the input parameter list. An outpupeter node is connected with the
function node through a directed edge from the wiparameter towards the function
node.

Views, V. Views are treated as queries; however the outthérsa of a view can
be used as input by a subsequent view or query imodu

Summary. A summaryof the Architecture Graph is a zoomed-out variainthe
graph that comprises only of modules as nodes dgdsedenoting any possible form
of provider relationship between modules. Formadl\summary is a directed acyclic
graphG=(Vs, Es) , with V;cRUVLUQ comprising the graph’s module nodes &ndE-
comprising pairs of providers and consumerB@s-relationshipedgeskEr.

Example.The following example (Fig. 1) shows a small unsity database. The
database contains information on semesters, s@ndsourring data for the courses
offered by a department, specific data for the sesiroffered by the department in a
particular semester, as well as information fodstis and their transcript — i.e., what
course they have enrolled to and with what grathe. fames of the relations and their
attributes are self-explanatory.

On top of this database, we define two views and tweries. The first view,
V_Course, combines three relationSemester, CourseStd, andCourse into a single
view that contains both the identifiers and thecdpsions of the involved entities.
The second viewy_Tr, joins V_Course with the relationTranscript, resulting in a
view that outputs all the information needed foemvstudent’s enrollment. Then, we
have two queries. The first query performs a s@hi-pver viewV_Tr and presents a
report that compares the grades for two courBBs| andDB_II for those students
who enrolled in both of them. The second query rspihe average grade (i.e., over
successfully passed courses) for every studentefat requires students’ names, so
the relatiorstudent is joined to the view_Tr

We have omitted all constraints (e.g., primary &oetign key) as well asmap
selectedges from the figure to avoid overcrowding iteThap-seleciedges can be
deduced from the names of the attributes

Semester
SM
MID

MDe
scr

CourseStd

NS_SM SMTX OuTS

AND

V_Course

MID

MDe
scr

CsID

CSN
ame

CIp

MID
SID
CSN
ame
Tgra
v Tr i[
L
INS_VC | SMTX |ouTs MID
MID
MID
MDe
scr MDe CSN
o= ame
csip =
CSN csip de
ame
. CSN

so (

Q_pass2courses

SMTX ouTS

SID

AND
i CSNamel

Tgradel

CSName2

S — Tgrade2

INS_V

Tgra

,,,,, B

SID

SName

GPA

ame
Transcript cIp
-
T — LiNs T
D ap
Tgra
SID SID de
Tgra
@ e
Student _
S

INS_S

z

Fig. 1. Architecture graph of the Reference example

Q_allStudentGPA

2.2 Graph Annotation with Policies

The presented graph model enables us to captureatimus dependencies between
the modules of the ecosystem at a most granulat.l&part from the simple task of
capturing the semantics of a database ecosystempyrdposed graph model allows us
to evaluate the impact of a change over the systefi8] we have provided a subtle
technique for mapping schema changes occurringhatdatabase ecosystem to
operations on the node of the graph (e.g., thetiaddof an attribute in a relation is
mapped to an addition of a child node in the retatinodule). In addition, we have
enriched the graph with rules, callgmblicies that dictate the actions that are
performed, when specific events occur on the nadethe graph. Policies can be
applied at various granularity levels on the gragh, from the module level down to
the level of attributes and operand nodes, ensuhagthe reaction to events for all
nodes in the graph [9]. Two kinds of rules are ki with respect to the semantics
incurred by an event, (gropagatethe change, meaning that the graph must be
reshaped to adjust to the new semantics incurrethéyevent; and (bblock the
change, meaning that we want to retain the old séosaof the graph and the
hypothetical event must be blocked or, at leashstrained, through rewriting that
preserves the old semantics. For instance, thecypdiOn add attribute to
Transcript Then propagate " defined on V_TrINS_ T node dictates the
propagation of the addition of a new attributeli@Transcript ~ relation towards the
schema of the view. Simple default values and potisolution rules can safely
guarantee that all nodes can determine the apptepgolicy for any event they
receive. We refer the interested reader to [8]f¢®] thorough discussion.

2.3 Message propagation and Status Resolution

Whenever a hypothetical event over a node (e.g.,ddletion of an attribute) is
submitted to the graph, the system must ensurg@hdhe event is propagated to all
the nodes that are affected directly or transifivéb) each of the affected nodes
acquires the correct status, according to its atioot with policies for this event.

Policy DeterminationClearly, it would be very hard for the user tovddo define
a policy per event for every module of the Architge Graph. In [9], we have
defined a language where the user can dictate Uttefpolicies both at the graph
level and for the children of individual nodes oirder to avoid this effort. In fact, the
language allows the user to define policies akedifiit levels of abstraction which can
be overriding one another (so, for example, if dagault policy for the deletion of
input schema attributes islock the user can override it for the input schema
attributes of a particular view). Then, a late-ivgd mechanism determines the
winner policy for each specific node. For a modiaiied description of the policy
annotation and determination, we refer the intecksiser to [9].

Status DeterminatianStatus determination stems from the simple apfitin of
rules. Given a finite vocabulary of evenig, a finite vocabulary of policiegs and a

finite vocabulary of statuse¥s, the only thing that we need is a set of rules as
functionDS: Vg X Vp -> V.

Tablel. Vocabularies for events, policies and statusesdes

Ve {SELF, CHILD, PROVIDER} x {ADD, DEL, UPD} x {STRUCTURE, SEMANTICS, S+S}

Vs> | (BLOCK, PROPAGATE}

Vs | {SELF, CHILD, PROVIDER} x {ADD, DEL, UPD} x {STRUCTURE, SEMANTICS, S+5 }

Table 1 explains that the events for which a nedeotified state that either itself,
or one of its children (e.g., a relation’s attribubr an attribute’s constraint) or a
provider is affected (by addition, deletion or ugjawith respect to its structure,
semantics or both. The policies are eitBdock (which dictates that the event is
practically vetoed at the node’s scopePoopagate Lastly, the statuses assigned can
have a scope indicating whether the impact of trenerefers to the node itself, its
ancestors within a module or its provider nodes.

Event propagation The third part of the mechanism is the broadogsf
messages to the neighbors of a node that acqusidus for an event. Each message
corresponds to a unique event occurring on theesemode and describes the event
type and the status assigned to it according tgtaeailing policy. Each message is
processed locally, inside a module and may triggex or more events for further
propagation to the consumer modules.

For example, the deletion of an attribute that ip@ates in the SELECT and
WHERE clauses of a view, generates a new messadgbg@onsumers of the view;
this message encodes the modification of the vietriscture and semantics.

3. Message propagation mechanism

At the high level, the graph nodes form a direcéegiclic graph of dependencies.
Thus, it is straightforward to obtain a topologicarting of the summary of the
architecture graph. We can easily enforce the thé¢“modules communicate with
each other via a single means: the output scheme ovider module notifies the
input schema of a consumer modulbi such cases, the following protocol is used:
(i) We topologically sort the graph at the module level
(i) We visit each module with its topological order ame check whether there
are incoming messages for it. If this is the c#se topological sort guarantees
that all messages pending for the input schemattaeainodule are ready.
(i) Every module processes locally the incoming evants also, locally decides
the status for its semantics and output schemat, Mes ready to propagate
this information to all its consumers (if any).

We examine, now, the protocol for handling of tergs within each module as
well as the structure and contents of the outgomegsage to the consumer nodes of
an affected node; this is the topic of this section

There are four kinds of nodes involved in the pgaon mechanism.

- Input schemata nodeswhich are the kind of nodes that receive
notifications for changes from other modules.

- Internal nods, which are: (a) possibly affected by the charigeéke nodes
of the input schema and (b) amenable to evoluti@mes by the users (e.g.,
a user altering the selection condition or the geswattributes of a view).

- Output schema nodewhich are the only nodes who emit messages to the
consumer modules for the possible modificatiorhefrtcomponent.

- Semantics nodesvhich determine whether the semantics of a corpbn
are the same or not and inform the output schendesdor further
propagation.

The requirements that we want to address regattimgnessage handling within a
module are that each event must affect the ap@mtepriodes and that every node
must be visited and processed (i.e., its statud brigletermined) once per message.
Hence, we introduce a process mechanism with fh@niog characteristics:

(a) Messages arriving at a node are propagatedll tof its consumers (i.e.,
adjacent nodes connected with an incoming edghisonbde)according to the type
of eventthat they encode (e.g., the addition of an attebs propagated only to
semantics and output nodes, whereas the deletican dadttribute is propagated to
attribute nodes). We describe this mechanism idd@wing sections.

(b) For each event initiated by the input schemathar user, we identify the
affected subgraph of the module according to tlaogol mechanism as described in
the following sections. For identifying the subdnapve process each event by
executing the protocol mechanism and assuming mtioatpolicies constrain the
flooding process. The produced subgraph contairg trese nodes potentially
affected by this event.

(c) Given that each identified subgraph is acy¢bee theorem 3), we again
perform a second execution of the protocol, stgrfiom the input schema (or the
node affected explicitly by the user) and visitegch node in a topological order of
the subgraph. According to the policy defined, a®né processed on a node generates
one or more messages, which are enqueued in theageetist of all of its consumers.
The next node to be processed is the next in theldgical order of the identified
subgraph. The mechanism guarantees that each sopgeoéessed once, after all
possible messages have arrived at it.

Next, we present the message handling mechanisraafth class of nodes. The
general structure of the event propagation mechaigpresented in Figure 2.

6. SMTX &
OUTS notify

0. input schema aquery
receives event\ 2. notify SMTX

FEAE 7. OUTS
INS_Sc1| —» SMTX ouTS notifies all
. ‘ consumers
1. notify Al |
children | o1
" ‘ 5. 5. internal
3. notify SMTX 02 nodes notify
tree nodes their fathers &
eventually,
. SMTX&OUTS

om nodes
4. notify output
attributes

Fig. 2. Event propagation mechanism within modules

Input schema nodes. An input schema receives messages from the oagh@ma
nodes of the providing relation / view containingcorred events on the provider’'s
structure or semantics. For instance, the outphérsa of a relation module can report
the following events to the input schema node gfiery accessing this relation:

(a)
(b)
(©

The relation is renamed or deleted.
Attributes are added/ deleted / updated (renamealodlified).
Constraints are added/ deleted / updated (renammednamlified). Events

occurred on relation constraints eventually gemenaiessages stating the
semantic change of the relation.

For any of the above events a message is constracté received by all input
schema nodes accessing the relation. The detalhanéun that is triggered by the
input schema node when receiving such a messagefalows:

(i) The correct policy (based on the type of the resbimnessage) is determined

(ii)

(i)

(iv)

for the receiving input schema node.

The rule dictating the policy is fired and the appiate status is assumed. In
the case of propagation, the node assumes a $&vatadjusting to the event,

whereas in the case of block policy, the node takstatus for blocking the

event. For example, in the case of an incoming ages$or the addition of a

new attribute, for which the input schema retaigg@agate policy, the input

schema node is assigned with a status for addamgjch

For events referring to the input attributes (edgletion of an attribute at the
provider’'s schema, renaming, domain modificatidn,)ehe appropriate input

attribute nodes of the input schema are notified.

The input schema node propagates a message caogtathanges on the

semantics of the provider module directly to theaetic node of the current

module — if such changes exist; otherwise no sotibrais taken.

10

(v) The input schema node propagates a message faioadofi children towards
the output schema node of the module and (if amyf)& group by node via the
semantic node.

Observe that each input schema has exactly onédgrol.e., the output schema of
the provider module. Hence, it can receive exaotlg message that triggers the
evolution handling mechanism in every module. lheotwords, a module can
receive, at most, as many event handling messagebkd same original event as its
input schemata. An alternative way to start the matsm is by a user applying a
change at the module, which again triggers examtly “input” message possibly at
an internal node.

Internal nodes. These can be either attributes in the input/ @luggchemata of a
module, or logical components of the semantics nafda module, like a function
node, an operand or a constant node, group by ette,

Intra-module nodes can receive messages either(fiptheir father (e.g., an input
schema node notifies that a specific input atteboust be deleted), (b) from their
provider nodes (e.g., an output attribute noderoperand node is notified by its
provider attribute in the input schema for its diel®), (c) one of its children or lastly
(d) explicitly by the user who triggers the moditfiimn of the node itself.

The message propagation for the nodes of this agtagainly notifies all their
consumers on what is happening to them as welbt#yimg the semantics node on
whether the semantics of the component change efdrer the mechanism for each
such node is as follows:

(i) — (i) The first two steps are like thosethé input schemaodes.

(iii) If the node has children and receives a notificafimm its father or if it
initiates the event, then its children are notifted. This mainly applies to
operand nodes in composite conditions at views gueries or relations’
attributes having constraints (e.g., conditionsgtikiren.

(iv) If the node notified by one of its providers or asfats children, the father of
the node is notified, too. This covers the casera/euser triggers an event in
the contents of a view (e.g., deletion of a conditior a relation (e.g.,
modification of an attribute), so that the eventuldobe also propagated
upwards to the module node.

(v) In all cases, the node consumers (if any) areiadtibo. This covers the case
where an input attribute is changed, so that tleaels propagated towards all
nodes (i.e., output attributes, conditions, funtsiogroup by attributes) that
refer to this attribute.

Observe that this way, every node notifies its ooms's, and every node does not
receive a message for the same event more thanpemaedge. The key here is that
there is a flow of the messages, either from aestoc node towards its descendants,
or from an intermediate node towards both its aecesand its descendants. Since
cycles do not exist, every node receives each mgesseaactly once, except for binary
nodes (e.g., ‘=" or ‘AND’ nodes in constraint tregt might receive a status from
both their edges). However, due to the topologisaiting of the tree, if an
intermediate node in the semantics tree receivigstanotification from one of its two
edges, it is possible to check whether anotherfication is also pending before
deciding its final status. At the end of this pregethe semantics node receives one

11

message (either a contingency blocking veto, orr@ggation message) for a
potential change in the subtrees of the WhereeGitoup By nodes.

Semantics nodes. A semantics node receives messages either fremingbhut
schema of the module for messages containing cBangethe semantics of the
provider modules or from its children. The mechanithat is triggered by the
semantics node when receiving such messagesdi@asd:

(i) — (i) The first two steps are like thoseth& input schemnodes.

(i) The semantic node propagates a message for additiomildren towards (if
any) the group by node.

(iv) The semantics node propagates all other messageimgdrom either the
input schema node (e.g., for changes in the seosantia provider module) or
its children (i.e., for changes in the semanticsthef module itself) to the
output schema node of the module.

Output schema nodes. The output schema is responsible for establistiveg
overall status of the module. An output schema nzatereceive messages from the
semantics node regarding semantic changes in tldeledrom the input schema for
additions of attributes or from one of its childfen changes referring to the exposed
structure of the module. The following mechanismagplied for handling a received
event signal:

(i) — (i) The first two steps are like thosetbé input schemaodes.

(i) The father of the output schema node, i.e., theutegl node, is notified too.
Whenever the module’s node gets a notification fritve output schema it
acquires the right status (i.blockif a veto has been fired or the appropriate
status in any other case).

(iv) Except for the case the assigned statiboisk all consumers (input schemata)
of the output schema node are notified with a ngsssannouncing the
module’s status

Table 2: Overview of message propagation for each kind oferia a module

M essages arrive from Type of M essages propagated to
node
{provider’s output schema} Input {children, semantics, output

schema | schema}
{father, provider, children, user(self)}| Internal | {children (if any), consumers,
Nodes father}

{input schema, children} Semantigs {output schema}
{semantics, children, input schema} Output | {consumers’ input schema, module}
schema

Example We, illustrate the propagation mechanism by eramgi two specific
evolution events on the graph of Fig.1: (a) theitamtd of a new attribute to the
Transcript relation, namelfExamYear, that represents the year that the student has
taken the exam on each course and (b) the remdvaittribute MDescr from the
select clause (i.e., output schema)o€ourse view. We assume that both changes
are explicitly invoked by the user and for eacttte#m, we hold the nodes that are

12

visited by the algorithm, the kind of messages Hraitve to these nodes, the status
that is assigned on them, the messages that thityaednlastly the forward nodes that
they inform. We, also, assume thmmbpagatepolicy is assigned on all visited nodes
and thus termination of the mechanism is not cabgealblock policy.
(a) Addition of Exaniear (EY) attribute to Transcript table The
message propagation for this event is presentddilie 3. The message for the
addition of EY on the Transcript node, results in assigning the appropriate
status for addingY as a new child. Since the policypsopagate an identical
message is created and the input schema viotR.INS_T connected with the
Transcript node is visited. The/_TR.INS_T node adapts the event and
informs the output schema node for the additiore &ffected subgraph for this
event according to our mechanism comprises nod& TR.INS_T,
V_TR.OUT_S,V_TR} which are visited in this order.
The V_TR.OUT_S node propagates, in turn, the event towards plitischema
nodes referring to the_Tr view. For theQ pass 2courses (Q1) query, each
input schema node (i.eQ1.INS_ V2 and QLINS V1) receives a distinct
message for the attribute addition. These messagepropagated towards the
query output schema @UT_S as two separate events. The message
propagation terminates on the output schema nddée dwo queries (see Figure
1 too), Q1.OUT_S and Q2.0UT_S, as no other consumer modules exists. The
output schema of th@_allStudentsGPA (Q2) query, receives two messages for
two separate events; one for the addition of tibate in the input schema of
the query and the other for the modification of #emantics as result of the
incorporation of the new attribute to the groupckause of the query.

Table 3: Message Propagation for the additiorEgémYear to tableTranscript

visited Visited | message | Status | message next node
module Node arriving emitted in queue
Transcript Transcriptt AC{EY} | To_AC| AC{EY} V_TR.INS_ T
V_TR INS. T | AC{EY} | To_AC| AC{EY} OUT_S
OUT_S | AC{EY}| To_AC| AC{EY} {V_TR
QLINSV1,QLINSV2,Q2INSV}
V_TR | AC{EY} | To_AC none None
Q1 INS_ V1| AC{EY}|To AC| AC{EY} OUT_S
INS_V2 | AC{EY} | To_AC| AC({EY} OUT_S
OUT_S | AC{EY} | To_AC| AC{EY} Q1
Q1 AC{EY} | To_AC| AC{EY} None
Q2 INS_V | AC{EY} | To_AC| AC{EY} {SMTX, OUT_S}
SMTX | AC{EY} | To_MS |AC{EY},MS {GB, OUT_S}
GB AC{EY}, | To_AC| AC{EY} None
MS
OUT_S | AC{EY}, | To_AC,| AC{EY}, Q2
MS |[To_MS MS
Q2 AC{EY}, | To_AC, none None
MS |To_MS

Legend: AC: Add_Child,Q1: Q_pass2courses, Q2: Q wiSitsGPA, MS: Modify_Semantics

13

Table 4: Message Propagation for the deletiomdéscr from V_Cour se view

visited visited message status message next node
module node arriving emitted in queue
V_Course MD DS To DS DS QUTS
OUTS DS To DC | DC{MD} | V TR.INS VC
V_TR INS_VC DC{MD} | To DC | DC{MD} | INS VC. MD
INS_ VC.MD | DC{MD} | To DS DS OUT_S. MD
OUT_S.MD DS To_DS DS OUT_S
OUT_S DS To DC | DC{MD} V_TR
V_TR DS To_DC DC{MD} none

Legend: DS: Delete_Self, DC: Delete_Child, MDescb M

(b) Deletion of attributeMdescr from V_Cour se view The removal of attribute
MDescr(MD) from the select clause &f Course view starts orMDescr node
of output schema nod® Course.OUT_S (Table 4). The message is first
propagated towards its father, namel\Course.OUT_S , which is assigned with
a status for deletion of one of its children, afent input schema node
V_TR.INS_VC is informed about the deletion. TR.INS_VC is assigned with
the same status and propagates the message t@edbiicschild node to be
deleted. AttributeMDescr of V_TR.INS_VC informs, in turn, the consumer
attribute belonging in the output schema of thewi€he propagation terminates
on the output schema nodle TR.OUT_S since no other consumers exist for the
specific attribute.

4. Theoretical Guarantees

In this section, we present the theoretical guaemtfor the correct execution,
termination and confluence of the aforementionedtqmol mechanism on the
architecture graph. We examine and prove theseepiiep both at the summary
graph, i.e., at the intermodule level (theorems),1a3 well as within each module
(theorem 4).

4.1 Guar antees at theintermodule level

In this subsection, we prove that the mechanismnfiessage propagation works
correctly at the summary dntermodulelevel. We assume that each module responds
correctly to a given event; we prove this propémtthe subsequent subsection.

Theorem 1 (termination)The message propagation at the intermodule level
terminates.

Proof The summary of the Architecture Graph idieected acyclic cycle. This is
due to the fact that a query depends only on viemgsrelations and relations do not
depend on anything (in the context of this pape¥,de not consider cyclic foreign
key dependencies). Since the summary graph is a,&Ccan topologically sort it
and propagate the messages according to this gipalmrder. Thus, all that it takes

14

for the message propagation mechanism to termisaté) each module emits at
most one message for each session to every oris akighbors; (b) the graph is
finite. Since both assumptions hold, the algoritenminates. 0

Theorem 2 (unique statugfach module in the graph will assume a uniquaistat
once the message propagation terminates.

Proof: At the summary level, each input schema of a cmesumodule receives
the status and the output schema structure ofrdsiger module. Theopological
ordering of the graph guarantees that whenever a moduleonsidered, all its
providers have already been processed. So, alrénains is to prove that once all
notifications from the module’s providers are irag#, the module will uniquely
acquire a status. This is proved in Theorem 4. 0

Theorem 3 (correctnessylessages are correctly propagated to the moddlde
graph.

Proof. The modules that must be appropriately notified thesse for which an
event occurs at their providers. From definitionthe summary level the Architecture
graph is a connected graph, where one (or morej} sghema node(s) of a consumer
module is connected vidir ected edges to the output schema node(s) of its providers.
The messaging mechanism dictates that each messpggpagated from the output
node of the provider module towards the input scheode of all consumer modules,
unless a block policy explicitly halts the propagat Thus, the connectivity of the
graph assures that the modules, which are eventwédited by the message
propagation mechanism, have at least one of thewigers affected. On the other
hand, the modules that are not visited by the mesha(a) either do not have any
provider affected or (b) a block policy exists; riéfere, they can safely ignore any
notification. 0

4.2 Guar antees at the intramodule level

In this subsection, we prove that once an eventvemrat a module, the module
responds to the event and annotates the outputnscivith the correct status.

Theorem 4 (termination and correctnesdjhe message propagation at the
intramodule level terminates and each node assaratgus.

Proof At the intra-module level, for the terminatiohthe mechanism, we must
prove that each constructed subgraph per eventisypadirected acyclic graph. For
the correctness of the mechanism we require thettyawde is processed once (and
thus assigned with a status) for all messagesimagriat a module per session. The
latter can be satisfied when the determined sulbgcap be topologically sorted and
traversed. Thus, for both requirements we must @rthat the subgraph that is
constructed per event type has no cycles. We diwefollowing types of messages
arriving at the module:

. Change in semantics of provider: the message artivehe input schema
node and is propagated to the semantics node. Thetel subgraph
comprises the following nodes and directed edgéspalogical order:

15

fputschema. >semantics outputschema ->moduie} . No cycles detected.

. Internal change in the semantics of a module (a.gser deletes a part of the
condition expression of a view): the semantics nsdeventually notified
from the upwards flow of messages in the sematrégesand the children are
notified from the downwards flow of messages.

o For the case that a condition node is modifiedgsaybh comprises
{nemalnode Sup condifontree Ssemantics Souputschema. >moduie} |,
{intemal node ->down concltion tree} . No cycles detected.

o For the case that a grouping attribute is modifsdbgraph comprises:
{GB Attributes >GB>semantcs —>outputschema >module}

. Deletion in the structure of the input schemaaéfitcted nodes in the tree of
the condition part are notified via the operandtiehship edges; all group
by and output schema are notified via the map-sebelges. Subgraph
potentially (if group by part exists) comprises:

{nputschema 2inputattributes},

{input attributes ->conditon tree ->semantics},
{input attributes ->GB attrbutes ->GB node >semantics},
{inputattributes -outputatiributes ->output schema}

{semantics >outputschema}and
fouputschrema >module} . No cycles detected.

. Addition in the structure of the input schema: s&ssage is sent to the output
schema and to the semantic node for informing tieeim by node (if any).
Subgraph potentially comprises:

{nputschema >semantics},

{nputschema outputschemay,

{semantics >GBnode},

{semantics >outputschemal,

fouputschema >moduke}. No cycles detected

. Deletion of in the input schema overall (the previdlies overall too): the
deletion is correctly propagated from the messasgd by all the child
nodes of the schema.

. Change in structure (deletion or addition) and s#ios of a provider. When
messages arriving at an input schema node contanges both at the
structure and the semantics of the provider modhkesubgraph is the union
of the subgraphs corresponding to each case. Tdwattribute addition and
change in provider semantics, the subgraph is:

{nputschema. >semarntics},

{nputschema >outputschemay,

{semantcs >GB},

{semantcs outputschema >moduke} . No cycles detected

For attribute deletion and change in provider sdiosnthe subgraph is:
{nputschema. >semarntics},

{nputschema >inputattributes},

{inputattrioutes condiion tree Ssemantics},

{nputattibutes >GBatroutes ~ >GB node Ssemantcs},

1 For ease of graph serialization we denote an aigeting from input schema towards
semantics as “input sche@@emantics”.

16

{inputattributes Soutputatiibutes Soutputschema}
{semantcs >outputschema}and
fouputschema. >moduie} . No cycles detected

In all cases, at the end of the process, the osigh#ma (and eventually the module
itself) has knowledge (a) of what happens to tbhitdren and (b) what happens to
module and can pass this information to the nemsamer.

Theorem 4 dictates that all nodes at the intrameotiyel will be processed once
and assigned with a status. The processing orgedetermined by the type of event
arrived at the module and the propagation mechatésminates at the module node,
which denotes the overall status of the module.

The status assigned to each node is determinetebtype of node, the type of
event encoded in the message arriving at the nodehe type of policy defined on
the node; thus, if only one message arrives atde,na unique status can be easily
determined. However, in the case that a node resdiwo or more messages (i.e.,
from many providers) containing different eventsumique status must first be
resolved for these different events and then prafgagto next nodes. In the next
proposition we show that all internal nodes evdhtuabtain a unique status per
session, regardless of the number of different agessarriving at them.

Proposition 1 (unique status@ll internal nodes visited by the algorithm will
obtain a unique status according to the definettpaind the types of events encoded
in the received messages.

Proof ~ We distinguish the following types of nodesput schema node, input
attributes, semantics node, GB node, groupingbatis, nodes in condition tree
(condition nodes and constants), output attributegput schema node and lastly,
module node. According to theorem 4, for all caségvents, the types of nodes
which can potentially receive two or more differeméssages in a single session are
the output schema and the semantics nodes. Alt attes have either one provider
in each subgraph derived by the mechanism (e.gheirtase of attribute addition the
GB node receives a message from the semantics whéegas for attribute deletion it
receives a message from one of the grouping at#shuor multiple arrived messages
are of the same type (e.g., a condition node reseiwo messages for the deletion of
both operand nodes). Unless the policy definedhenriode isblock (the status is
always resolved as block), the status is uniquebgninined according to the type of
event. A semantics node however can receive asdhge time a message from the
input schema (e.g., for a change in the providseshantics or the addition of an
attribute) and one or more messages from its arlde.g., for the deletion of a
condition or a grouping attribute). In all cases thsolved status f@ropagatepolicy
is the same, namely “to modify semantics”, and thasambiguous statuses can be
assigned to the semantics node. Output schemaheoother hand, can potentially
receive a message from the input schema for atitribdditions, a message from the
semantics node for the update of the module seosrtind a message from its
children for the deletion of an output attributer Fpropagate policy, the resolved
status depends on the received message and cate deadification in semantics,
structure or both (e.g., “to modify semantics amldl attribute X”, or “to modify
semantics and delete attribute Y”, etc.). In afless statuses are uniquely identified in
all nodes within a module, regardless of the nunobenessages received.

17

5. Rélated Work

Schema evolution is a long-term problem in datalvasearch, addressed each time
under the specific characteristics and operatidniseoapproached data model. In [11]
one of the earliest surveys on schema versionidgeaolution is presented, whereas
a categorization of the overall issues regardinglon and change in data
management is presented in [10]. Evolution relaggproaches have been also
proposed for the OO paradigm [13] and DW configoret [3, 4], as well. Relational
schema evolution and versioning are revisited in \Where the authors introduce a
technique for publishing the history of a relatibdatabase in XML, employ a set of
schema modification operators (SMOSs) to repredentiappings between successive
schema versions and an XML query language to efftty address queries expressed
over different versions using the mappings estabtisoy the SMOs.

Related to our approach, the problem of view adeptaafter redefinition is
mainly investigated in [1, 2] where changes in \dedefinition are invoked by the
user and rewriting is used to keep the view coeststvith the data sources. Also, [5]
deals with the view synchronization problem, whimmsiders that views become
invalid after schema changes in their definitioheTuthors extend SQL, enabling the
user to define evolution parameters characteritivggtolerance of a view towards
changes and how these changes will be dealt witihglthe evolution process. In this
context, our work can be compared with that ofifb}he sense that policies act as
regulators for the propagation of schema evoluttonthe graph similarly to the
evolution parameters introduced in [5]. In [12] sanilar framework for the
management of evolution is proposed. Still, the ehad [12] is more restrictive, in
the sense that it is intended towards retainingotiginal semantics of the queries by
preserving mappings consistent when changes o@curwork is a larger framework
that allows the restructuring of the database g(aph model) either towards keeping
the original semantics or towards its readjustnterthe new semantics. In addition,
we employ a detail representation and a messagpagation mechanism for
detecting and regulating evolution impact in coplatabase ecosystems.

Our rule-based propagation of schema evolution gésirin architecture graphs
shares some common characteristics with probleraderke to the definition and
management of active rules in database systemsm@vtion the work presented in
[14], where the authors formulate the problems @inination, confluence and
observation in active database rules. Given a fsattive rules, the authors provide
formal methods for evaluating whether the executibthis set terminates, produces a
unique final database state, or finally producenigjue stream of observable actions
regardless of the rules’ execution order.

6. Conclusions

In this paper, we focused on the problem of chapgepagation in database
ecosystems. Based on a graph representation dfad&taonstructs and considering
that this graph can be annotated with policiesatiitg) the response of a software

18

module to a possible event, we investigated theaghpf such events to the database
and presented a graph-based mechanism to contqmh@ation of events.

10.

11.

12.

13.

14.

References

Z. Bellahsene, “Schema evolution in data warehousasiwledge and Information
Systemsyol. 4, no. 3, pp. 283-304, May 2002.

Gupta, I. S. Mumick, J. Rao, K. A. Ross, “Adaptingtenalized views after redefinitions:
Techniques and a performance studgformation Systems ¥pl. 26, no. 5, pp. 323-362,
Jul. 2001.

M. Golfarelli, J. Lechtenbérger, S. Rizzi, G. Voss&chema Versioning in Data
WarehousesProc. Conceptual Modeling for Advanced Applicatiooniains, ER 2004
Workshops (ECDM’'04) pp. 415-428, 2004.

C. Kaas, T. B. Pedersen, B. Rasmussen, “Schema EvofatiGtars and Snowflakes”.
Sixth Int'l Conference on Enterprise Informatiors@yns (ICEIS'04)pp. 425-433, 2004.

Moon, H.J., Curino, C.,Deutsch, A., Hou, C.Y., Zanjdlo Managing and querying
transaction-time databases under schema evolutiafLDB' 08, pp. 882-895, 2008.

Nica, A. J. Lee, E. A. Rundensteiner, “The CSV altdponi for view synchronization in
evolvable large-scale information systenf8foc. Sixth International Conference on
Extending Database Technology (EDBT'9&). 359-373, 1998.

G. Papastefanatos, P. Vassiliadis, A. Simitsisyassiliou, “What-If Analysis for Data
Warehouse Evolution’Proc Ninth International Conference on Data Warelingsand
Knowledge Discovery (DAWAK'0)p. 23-33, 2007.

G. Papastefanatos, P. Vassiliadis, A. Simitsisyassiliou.Policy-Regulated
Management of ETL Evolutiom Springer Journal on Data Semantics, vol. Xif, 146—
176, 2009.

G. Papastefanatos, P.Vassiliadis, A.Simitsis, Kiggdjs, F.Pechlivani, Y.Vassiliou,
“Language Extensions for the Automation of Datatfasieema Evolution”In 10th
International Conference on Enterprise Informat®ystems (ICEIS '02008.

J.F. Roddick et al, “Evolution and Change in Data &gament - Issues and Directions”.
SIGMOD Recordyol. 29, no. 1, pp. 21-25, 2000.

J.F. Roddick., “A survey of schema versioning Isdoeslatabase systemslnformation
Software Technology,Jol. 37, no. 7, 1995.

Y. Velegrakis, R.J. Miller, L. Popa, “Preserving rpam consistency under schema
changes”VLDB J, vol. 13, no. 3, pp. 274-293, 2004.

R. Zicari, “A framework for schema update in an abjeriented database systerRtoc.
Seventh International Conference on Data Engineg(i@DE’'91), pp. 2-13, 1991.

A. Aiken, J. M. Hellerstein, J. Widom: Static Analy Techniques for Predicting the
Behavior of Active Database Rules. ACM Trans. Datalsyst. 20(1): 3-41 (1995).

19

