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Abstract P2P computing gains increasing attention lately, since it pro-

vides the means for realizing computing systems that scale to very large

numbers of participating peers, while ensuring high autonomy and fault-

tolerance. Peer Data Management Systems (PDMS) have been proposed

to support sophisticated facilities in exchanging, querying and integrating

(semi-) structured data hosted by peers. In this paper, we are interested in

routing graph queries in a very large PDMS, where peers advertise their

local bases using fragments of community RDF/S schemas (i.e., views). We

introduce an original encoding for these fragments, in order to efficiently

check whether a peer view is subsumed by a query. We rely on this en-

coding to design an RDF/S view lookup service featuring a statefull and a
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stateless execution over a DHT-based P2P infrastructure. We finally evalu-

ate experimentally our system to demonstrate its scalability for very large

P2P networks and arbitrary RDF/S schema fragments, and to estimate the

number of routing hops required by the two versions of our lookup service.

1 Introduction

Scientific or educational communities are striving nowadays for highly au-

tonomous infrastructures enabling to exchange queries and integrate (se-

mi-)structured data hosted by peers. In this context, we essentially need a

P2P data management system (PDMS), capable of supporting loosely cou-

pled communities of databases in which each peer base can join and leave

the network at free will, while groups of peers can collaborate on the fly

to provide advanced data management services on a very large scale (i.e.,

thousands of peers, massive data). A number of recent PDMSs [4,11,14,

20] recognize the importance of intensional information (i.e., descriptions

about peer contents) for supporting such services. Capturing explicitly the

semantics of databases available in a P2P network using a schema enables

us to (a) support expressive queries on (semi-) structured data, (b) deploy

effective methods for locating remote peers that can answer these queries

and (c) build efficient distributed query processing mechanisms.

In this paper, we are interested in routing graph queries addressed to

an RDF/S based PDMS. More precisely, we consider that peers advertise

their local bases using fragments of community RDF/S schemas (e.g., for e-
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learning, e-science, etc.). These advertisements are specified by appropriate

RDF/S views and they are employed during query routing to discover the

partitioning (either horizontal, vertical or mixed) of data in remote peer

bases. The main challenge in this setting, is to build an effective and efficient

lookup service for identifying, in a decentralized fashion, which peer views

can fully or partially contribute to the answer of a specific query. Our work

is motivated by the fact that a sequential execution of the routing and

planning phases for a specific query is not feasible solution in a PDMS

context. As a matter of fact, due to the very large number of peers that can

actually contribute to the answer of a query, an interleaved query routing

and planning will enable us to obtain as fast as possible the first answers

from the most relevant peers while the query is further processed by others.

The results presented in this paper1 is the first step towards this goal [25].

More precisely, we make the following contributions:

– we propose a novel encoding of arbitrary RDF/S schema graph frag-

ments for checking whether a peer view is subsumed by a query;

– we introduce a DHT-based schema index to smoothly distribute view

advertisements over peers;

– we design an RDF/S view lookup service that identifies which peers can

fully or partially contribute to the answer of a graph query;

– we experimentally demonstrate the scalability of our DHT-based schema

index for networks of different sizes, as well as, estimate the number of

1 This work has been presented in the 4th Hellenic Data Management Sympo-
sium (HDMS’05), Aug 2005. The symposium does not publish official proceedings.
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routing hops required by a statefull and a stateless execution of the

proposed lookup service.

To the best of our knowledge no other PDMS offers the aforementioned

functionality. Compared to the data indexes maintained by data-driven

PDMSs that publish directly peer bases on the network [27,13,5,6,2], the

distributed index on peer views maintained in our system is smaller in size.

In fact, it corresponds to the number of fragments that can be extracted

from the RDF/S schemas. Also, it requires a considerably smaller number

of messages to be exchanged when peers join or leave the network. More-

over, since schema fragments advertised by peers evolve less frequently than

their actual bases, such a schema index does not need frequent updates. As

a result, in our approach index maintenance costs are reduced. Unlike other

schema-driven PDMSs [20,12] which maintain a simple inverted list of the

RDF/S classes (or properties) actually populated in peer bases, our frame-

work is capable of routing in one step complex graph queries. The proposed

lookup service is able to immediately identify peers matching an RDF/S

schema graph fragment without the need to further decompose queries. In

this way, we are able to return the first results from those peers that can ac-

tually answer the initial query as a whole. Further, our framework exploits

the computing power of the P2P network for fairly distributing in different

peers the routing, planning and execution load of queries. Finally, it is worth

noticing that PDMSs like Piazza [14] rely on the mappings established be-

tween the individual peer schemas to route queries on semantically related
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peers rather than on a distributed index of graph fragments from multi-

ple schemas. We consider that schema heterogeneity is an orthogonal issue,

although our system can be extended to also address query reformulation

issues [8] when complex mapping rules are available between the schemas

employed by peers.

We believe that our framework is particularly suited for supporting large

scale autonomous organizations for which neither a centralized warehouse

nor an unlimited data migration from one peer to another are feasible solu-

tions due to societal or technical restrictions. However, peers agree to pub-

lish and query their bases according to a number of globally known schemas

(e.g., defined by various standardisation bodies). Moreover, our framework

can be used as a base system, where one can build upon it sophisticate

data management services, such as workload balance and data replication

mechanisms. Although, we rely on RDF/S schemas and Chord for deploying

a structured P2P infrastructure, the results presented in this work can be

easily adjusted to other data models, like XML, and DHT protocols, like

CAN [22].

The rest of the paper is organized as follows. In Section 2, we overview

the proposed framework by focusing on how expressive RDF/S queries em-

ployed to retrieve data from the P2P network are matched against the views

published by the peers to advertise their bases. In Section 3, we introduce

our encoding of arbitrary RDF/S schema fragments. In Section 4, we detail

how this encoding can be employed to build a DHT-based schema index
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supporting effective and efficient lookup of intensional peer base advertise-

ments. In Section 5, we analyse the experimental figures of our framework.

Finally, Section 6 discusses related work and Section 7 summarizes our con-

tributions and future work.

2 RDF/S based PDMS

In our framework, we consider that every peer provides descriptions about

information resources available in a P2P network that conform to a number

of community schemas (e.g., for e-learning, e-services, etc.). Peers employing

the same schema to construct such description belong essentially to the same

Semantic Overlay Network (SON) [11]. The notion of SONs appears to be

an intuitive way to cluster together peers sharing the same model for a

particular domain or application for expressing useful queries and exchange

information with others. Of course, a peer may belong to more than one

SON, depending on the semantics of its base. Moreover, a peer may host

only a part of the semi-structured descriptions available in the network.

The assumption about the existence of several globally known schemas

in large scale networks seems more reasonable than forcing thousands of

peers to design and integrate their disparate schemas. There is a natural

pathway for adopting such globally schemas: the information produced by

popular software and standardization bodies [15]. Since our framework is

orthogonal to mappings, advances in the area of data integration can only

benefit our work.
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Fig. 1 An RDF/S schema graph, fragments advertised by peers and query pat-
terns.

In order to design an effective and efficient P2P query routing mechanism

we need to address the following issues: (a) how a SON can be defined? (b)

how peers advertise their bases in a SON? (c) how peers formulate queries

in a SON and finally (d) how peers decide which views of a SON match

their queries? In the following subsections, we will present the main design

choices of our framework in response to the above issues.

2.1 RDF/S schemas

A natural candidate for representing descriptive data (ranging from sim-

ple structured vocabularies to complex reference models [18]) about various
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information resources available in a SON is the Resource Description Frame-

work and Schema Language (RDF/S) [23]. The core primitives of RDF/S

schemas are classes and properties. Classes describe general concepts or en-

tities. Properties describe characteristics of classes or relationships between

classes. Both classes and properties may be related through subsumption.

Every property defined in an RDF/S schema has a domain class (i.e., the

class that has this property) and a range class (i.e., the value of this prop-

erty). A property and its domain and range classes form a schema triple,

denoted by (domain(p), p, range(p)). An RDF/S schema is a set of schema

triples forming a directed labelled (multi)graph, called in the sequel RDF/S

schema graph. For example, consider the RDF/S schema graph shown in

the upper part of Figure 1. The circular nodes are labeled with class names

(e.g., C2, C3), while the solid edges with property names (e.g., p3). The

dashed edges represent the subsumption relationships of classes (e.g., be-

tween C7 and C2) or properties (e.g., between p7 and p3). Formally, an

RDF/S schema graph is defined as follows.

Definition 1 An RDF/S schema graph is a directed multigraph R = ({C ∪

L}, P,≺c,≺p), where:

1. C is a set of nodes labelled with an RDF/S class name.

2. L is a set of nodes labelled with a data type (RDF/S literals).

3. P is a set of edges (c1, p, c2) from a node c1 to a c2 labelled with a

property p, where domain(p) = c1 with c1 ∈ C and range(p) = c2 with

c2 ∈ C ∪ L.
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4. ≺c is a partial order imposed on nodes in C (RDF/S class subsumption).

5. ≺p is a partial order imposed on edges in P (RDF/S property subsump-

tion).

The framework presented in this paper can be applied to a wide-range

of applications needs: from one SON defined by a unique RDF/S schema,

to a SON defined by several interconnected RDF/S schemas until several

SONs defined by different RDF/S schemas. This is due to the expressiveness

of the RDF/S data model which (a) allows easy reuse or refinement of

descriptive schemas employed by peers through subsumption of both classes

and properties; (b) permits irregular heterogeneous descriptions in the sense

that a resource may be multiply classified under several classes from one or

several peer schemas (identified by appropriate namespaces) and (c) extends

the scope of a resource description beyond the physical boundaries of an

XML file hosted by a peer.

2.2 RDF/S peer base advertisements and queries

Each peer should be able to advertise the content of its local base to others

with respect to the RDF/S schemas of the SONs they belong to. Using these

advertisements a peer can become aware of the data hosted in remote peer

bases. However, since an RDF/S schema may contain numerous classes and

properties not necessarily populated in a peer base, we need a fine-grained

definition of schema-based advertisements. To this end, we employ views

to specify the fragment of an RDF/S schema graph for which all classes
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and properties are populated in a peer local base. In a similar way, peers

can retrieve data from the PDMS by issuing queries, which also specify a

particular RDF/S schema fragment of interest.

Queries in our framework are formulated in RQL [17], a full-fledged

RDF query language which provides sophisticate pattern matching facil-

ities against RDF/S schema and data graphs. Additionally, peers employ

RVL [19], an extension of RQL, for defining views as virtual RDF/S graphs.

Both languages employ patterns to extract the RDF/S schema graph frag-

ments which are relevant to the data requested by a query/view. In the rest

of the paper we stick on the notion of RDF/S schema fragments specified

by these patterns, rather than their syntax on RQL or RVL.

Definition 2 Given an RDF/S schema graph R = ({C ∪ L}, P,≺c,≺p), a

fragment specified by a query or view pattern over R is a subgraph R′ =

(C ′, P ′) such that C ′ ⊆ C and P ′ ⊆ P .

The lower part of Figure 1 illustrates three peer bases and their view

advertisements. Each view specifies a different fragment of the SON RDF/S

schema graph depicted in the upper part of Figure 1. The right part of

Figure 1 illustrates some of the basic patterns that can be employed to

formulate complex queries and their corresponding fragments of the SON

RDF/S schema graph. More precisely, the pattern of Figure 1a can be used

to retrieve all the instances (X,Y ) of the domain and range classes of prop-

erty p. Note that this pattern takes also into account the class and property

subsumption relationships (denoted by the dashed triangles) to include in
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the result transitive instances of domain/range classes. For example, the

query pattern (X, p3, Y ) will return the direct and transitive instances of

C2 (i.e., domain class) and C3 (i.e., range class) related through the prop-

erty p3 and its subsumed property p7. The pattern of Figure 1b is similar to

the first, with the exception of considering only the strict interpretation of

property p (i.e., no properties subsumed by p will be included in the result).

Finally, the pattern of Figure 1c will return all the properties relating in-

stances of the classes C and C ′, respectively. These properties can be either

defined to have C and C ′ as domain and range classes respectively but also

any of the classes subsuming them.

We can easily observe the similarity in the intensional representation of

both peer base advertisements and query requests as RDF/S schema graph

fragments. By representing in the same logical framework what data are

requested by a SON (i.e., queries) and what data are actually hosted in

each peer base of the SON (i.e., views), we can easily understand the data

partitioning (horizontal, vertical, mixed) in remote peers relative to a query.

This framework can be easily extended to reformulate queries expressed

against a SON RDF/S schema in terms of the heterogeneous schemas or

data models (e.g., relational, XML) employed locally by the peer bases [8].

2.3 RDF/S query and view subsumption

In order to decide which peer advertisements match a SON query, we need to

check whether the classes and properties of the RDF/S schema fragments
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specified by the corresponding peer views are subsumed by those of the

query. As studied in [24] checking containment of conjunctive RVL views

and RQL queries involving arbitrary RDF/S schema and data patterns is an

NP-complete problem. For this reason we restrict our framework to patterns

returning data according to a known schema fragment2 as follows:

Definition 3 Let the RDF/S schema graph R = (C,L, P,≺c,≺p). Let also

R′ = (C1, P1) and R′′ = (C2, P2) be two fragments of R, specified by a query

pattern Q and a view pattern V , respectively (C1, C2 ⊆ C and P1, P2 ⊆ P ).

Q subsumes V (or V is subsumed by Q) if:

1. ∀c1 ∈ C1, ∃c2 ∈ C2, c1 = c2 or c2 ≺c c1, and

2. ∀p1 ∈ P1, ∃p2 ∈ P2, p1 = p2 or p2 ≺p p1.

Horizontal subsumption:
Q subsumes V2

Vertical subsumption:
Q subsumes V1

C3
p3

C2

C7
p7

C8V2

Q
p3

C2 C3Q

p3
C3C2C1

p1
V1

Fig. 2 Two cases of view subsumption.

Notice that in the above definition, all classes/properties in Q must be

present or subsume a class/property in V . However, V may have additional

classes and properties. Figure 2 illustrates two different subsumption cases.

In the left part of Figure 2, query Q vertically subsumes view V 1 in the sense

that V 1 has property p1 with domain class C1 that are not present in Q.
2 As a matter of fact we consider an RQL core fragment including also range

restricted schema variables as appearing in pattern c) of Figure 1 [24].
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However, V 1 is subsumed by Q since it contains a fragment that matches

Q. On the right part of Figure 2, Q horizontally subsumes V 2 since all

classes and properties in V 2 are subsumed by the classes and properties

of Q. A query may subsume a view in either the above two ways or in

any combination of them. Therefore, we need efficient support to decide

subsumption of RDF/S schema graph fragments. For this purpose, we will

present in the next section an encoding allowing to check whether an RDF/S

schema fragment is subsumed by another, in linear time to the size of the

fragments.

3 Encoding RDF/S schema fragments

This section introduces a succinct representation of RDF/S schema graphs,

based on a structure called Adjacency and Subsumption Cube (in short Ad-

jSub Cube) allowing to derive an encoding for fragments of arbitrary size

and structural form (i.e., linear, tree or graph). The AdjSub Cube is a con-

ceptual structure that helps us derive an encoding, but it does not need to

be implemented by any peer. An AdjSub Cube provides (a) adjacency infor-

mation for nodes (i.e., whether a class is related to another one via a certain

property) and (b) subsumption information for classes and properties (i.e.,

whether a class/property subsumes another).

The AdjSub Cube extends the concept of the adjacency matrix by adding

a third dimension capturing labeled edges (i.e., the properties). For each

property, the first dimension (vertical) represents the nodes that appear as
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Fig. 3 Interval encoding of the class/property hierarchies.

the domain classes, the second (horizontal) the nodes that appear as the

range classes and the third one the property name. Moreover, it imposes an

ordering of classes and properties on each dimension based on an interval

encoding of the RDF/S class and property subsumption hierarchies.

In general, an interval encoding over a subsumption hierarchy is main-

tained using labels of the form [start, end ] such that every interval of a

child node is contained in the interval of its parent. In this paper we employ

the encoding of [3] where a tree node3 u is labeled with [index (u), post(u)]:

post(u) is the number assigned to u when a postorder tree traversal is con-

sidered, while index (u) is the lowest of the post numbers assigned to u’s

descendants. Note that index(u) ≤ post(u) and that u ≺c v (or u ≺p v) iff

index(u) ≥ index(v)∧ post(u) < post(v). Figure 3 illustrates the interval en-

coding of the class and property subsumption hierarchies given in the SON

RDF/S schema of Figure 1. An AdjSub Cube exploits the post numbers of

the classes and properties to arrange them in each dimension. It follows

that when we organize classes (properties) in the inverse order from the one

3 For simplicity, we consider only tree shaped subsumption hierarchies although
this work can be extended to DAGs [9] by applying a left/right DFS labeling
schema.



Indexing Views to Route Queries in a PDMS�� 15

obtained by the postorder traversal, subsumed classes (or properties) will

succeed the subsuming classes (or properties).
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Fig. 4 The AdjSub Cube of an RDF/S schema.

Given an RDF/S schema graph R, we define the corresponding AdjSub

Cube AS as follows: for every schema triple (d, p, r) of R, where p is the

property, d the domain class and r the range class of the property, we set cell

ASijk = 1, where i = |C| − post(d), j = |C| − post(r) and k = |P | − post(p).

The remaining cells in the AdjSub Cube are set to 0. An example of the

AdjSub Cube constructed for the RDF/S schema of Figure 1, is depicted in

Figure 4. We next define formally the AdjSub Cube.

Definition 4 Let an RDF/S schema graph R = (C,L, P,≺c,≺p), and d, r ∈

C, p ∈ P . An AdjSub Cube AS for R is an |C|× |C|× |P | bitmap such that:

AS(i, j, k) =

⎧⎪⎪⎨
⎪⎪⎩

1 if domain(p) = d and range(p) = r

0 otherwise

where i = |C| − post(d), j = |C| − post(r) and k = |P | − post(p).
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Any fragment of the original RDF/S schema graph, can be represented

in the same AdjSub Cube created for this schema, by setting to 1 only those

cells of the cube that correspond to the schema triples of the fragment. We

can enumerate all cells in the AdjSub Cube based on their position through

the function pos(ASijk) = k×|C|2 + i×|C|+j, where i, j = 0, 1, . . . , |C| − 1

and k = 0, 1, . . . , |P | − 1. Based on this enumeration, every fragment is

encoded by assigning a unique number N as defined below:

Definition 5 Let an RDF/S schema graph R = (C,L, P,≺c,≺p) and the

corresponding AdjSub Cube AS. Every fragment of R represented in AS, is

encoded by assigning a unique number N , such that

N = aL−12L−1 + . . . + a121 + a020 and an = ASijk,

where n = pos(ASijk), and L = |C| × |C| × |P | the size of the AdjSub Cube

AS.

The unique number N is a binary number, where the coefficient an of

the factor 2n is set to 0 or 1 depending on the value of the cell whose

position is pos(ASijk) = n. One may easily compute N if for every schema

triple (d, p, r) of the fragment locates its position in the AdjSub Cube. Since

N may be a fairly large number, a simple way to store N is as a set of

integers {n1, n2, n3, . . .} where ni is the pos(ASijk) of each schema triple in

the fragment. For example, consider the view V 1 of Figure 2 comprising the

schema triples t1 = (C1, p1, C2) and t2 = (C2, p3, C3). For the first schema

triple t1 we have: i = |C| − post(C1) = 8 − 2 = 6, j = |C| − post(C2) =
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8 − 4 = 4, k = |P | − post(p1) = 8 − 2 = 6 and pos(t1) = k · 82 + i ·

8 + j = 6 · 64 + 6 · 8 + 4 = 436. Consequently, for the schema triple t2,

pos(t2) = k · 82 + i · 8+ j = 4 · 64+4 · 8+2 = 290. Thus, the unique number

of view V 1 is N(V 1) = 2436 +2290 ≡ {436, 290}. Given the above encoding,

we can decide if a fragment is subsumed by another in linear time to its

size.

Theorem 1 Given two connected fragments R′,R′′ of an RDF/S schema

graph R and their unique numbers defined by the above encoding N(R′) =

2n1 +2n2 + . . .+2nk ≡ {n1, n2, · · · , nk} and N(R′′) = 2n′
1 +2n′

2 + . . .+2n′
l ≡

{n′
1, n

′
2, · · · , n′

l}, respectively, it holds that:

(a) if R′ subsumes R′′ ⇒ N(R′′) > N(R′).

(b) if ∀ni ∈ {n1, n2, . . .},∃n′′
i = n′

j , n
′
j ∈ {n′

1, n
′
2, . . .} \ {n′′

1 , . . . , n′′
i−1} : n′

j ∈
⋃

δ

⋃
λ[ni + λ|C| + δ|C|2, ni + λ|C| + δ|C|2 + κ] ⇒ R′ subsumes R′′, where

δ = post(prop(t))− index(prop(t)), λ = post(domain(t))− index(domain(t)),

κ = post(range(t))−index(range(t)) and t is the schema triple corresponding

to the cell with pos(AS)=ni.

Sketch of proof. If R′ subsumes R′′ then from the construction of the AdjSub

Cube is easy to prove that N(R′′) > N(R′). Given two fragments R′,R′′,

in order for R′ to subsume R′′, we need to check whether for every schema

triple in R′ (∀ni), there exists a subsumed schema triple in R′′ (∃n′
j). Given

that the schema triple corresponding to the cell n′
j is subsumed by the

schema triple corresponding to the cell ni, n′
j is positioned somewhere in a
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sub-cube of the AdjSub Cube. This sub-cube is confined by the subsumed

triples of ni.�

4 DHT-Framework for RDF/S

Structured P2P systems based on Distributed Hash Tables (DHTs) can

support large, highly distributed networks while ensuring a fair load distri-

bution among peers at the cost of an extra message overhead when peers

join or leave the network. A popular DHT-based protocol for storing and

retrieving pairs of (key, data) is Chord [26]. More precisely, the main service

supported by Chord is lookup(key), which returns in at most O(log n) rout-

ing hops (i.e., network messages) the peer’s address that is responsible for

storing the pair (key, data). Peers are associated with keys through their

identifiers. A peer’s identifier is chosen by hashing the peer’s IP address,

while a key identifier is produced by hashing the key. Identifiers are ordered

on an identifier circle modulo 2m, called the Chord ring. Key k is assigned to

the first peer whose identifier is equal to or follows the identifier of k in the

identifier circle. This peer is called the successor peer of key k, denoted by

successor(k). To locate a key in the Chord ring, each peer maintains a rout-

ing table, called the finger table, where the ith entry contains the identifier

of the first peer that succeeds its identifier by at least 2i−1.

In our context, we build a DHT-based schema index where a key is the

unique number of the RDF/S fragment specified by the view of a peer.

Rather than data objects a key designates peer IPs populating the corre-
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sponding fragment. To produce the key identifier and place it on the Chord

ring, an order preserving hash function is used to maintain the ordering over

subsumed views given by the AdjSub Cube. For example, if N = {n1, n2, n3}

a simple order preserving hash function is H(N) = (n1 · n2 · n3) mod 2m.

To summarize, each peer stores pairs of (view, {peers}) and replies to a

lookup(view) request with the set of peers that had advertised the specific

view. However, there might be views hashing to the same key identifier or

same keys may correspond to views that are defined over different SONs.

The first problem can be easily bypassed by sending along with the lookup

request, the unique number of the encoded view. The second problem can

be addressed by distinguishing the lookup requests via the unique names-

pace of the RDF/S schema defining a SON. When SONs are interconnected,

the AdjSub Cube is defined using the class and property hierarchies of all

involved RDF/S schemas. Next, we describe how our DHT-based infras-

tructure evolves when peers join or leave the network or even update their

views.

4.1 Peer joins, departures and updates

Each peer joining the network advertises through a view the fragment of the

RDF/S schema which is actually populated in its local base. Recall that a

peer is able not only to answer queries that match exactly its view, but also

any of its fragments (i.e., views that vertically subsume its view). When

the joining peer wishes to inform about its capability to answer queries
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Fig. 5 Peer 3 advertise its view.

related to a vertically subsuming view, it issues lookup(view) requests to

identify the successors responsible for the subsuming views accompanied

by a store(view, IP) request. Moreover, Chord provides a mechanism for

key reallocation for inserting the newly added peer to the DHT index. The

predecessor of this new peer sends the (view, {peers}) pairs for which it will

be responsible from now on.

It should be stressed that a joining peer may advertise only the verti-

cally and not the horizontally subsuming views. Advertising the horizontally

subsuming views too, implies that queries are systematically extended to in-

clude peer data classified under subsumed classes and properties. However,

this functionality is specified by the peer queries and not the peer views

(e.g., see patterns (a) and (b) of Figure 1). On the other hand, if vertically

subsuming views were not explicitly advertised but considered during query

processing, the lookup service would have to search a larger portion of the
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P2P network and thus incurs an increased cost in routing hops (i.e., to dis-

cover all keys that are a multiplier of the key associated with the requested

view). The cost of advertising the vertically subsuming views is significant

less than trying to explicitly locate them each time a new lookup request is

issued. However, advertising all possible vertical subsuming views at once

can be stressfull for the newly joining peer, since the number of distinct

vertical views can crow in the worst case exponential to the number of

properties in the view. For this reason, when a peer joins the network it

may advertise only the vertical subsuming views with one triple (fragments

of size 1). In this way the peer makes available all of its contents without

having the overhead of advertising all of its vertical subsuming view. In a

later stage, a peer may decide, depending the query workload and the dura-

tion of staying in the network, to advertise the rest of its vertical subsuming

views. For example, in Figure 5, peer3 joins the network and publishes the

view V 0 and all views of size one that vertically subsume V 0, namely V 1 to

V 3. In this way peer3 has made available all of it contents. In a later stage,

peer3 will also advertise views V 4 to V 6. Since peer5 is the successor peer of

key identifiers H(N(V 5)) and H(N(V 6)), it receives a request to advertise

peer3’s views V 5 and V 6 and adds peer3 to the set of peers associated with

views V 5 and V 6.
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To ensure consistency of the DHT-index when a peer leaves the system,

it must pass the key identifiers that holds to its successor peer4. In addition,

it must notify all peers that have indexed its views to modify their stores.

There two ways to deal with an update of a peer view. The simplest way

is to consider an update as a departure followed by a join. Another solution

for trivial updates (such as adding or removing a schema triple from a

view) is to let the peer to decide what changes must be performed to the

DHT-based schema index to reflect the update effect. Consider for example

that peer3’s view V 0 has been updated by adding the (C1, p1, C2) schema

triple. Then, the DHT-based schema index can be updated incrementally

by advertising only the additional views subsuming the newly created one,

since V 0, V 1, . . . , V 6 are still valid. Finally, a schema update is handled as

if it was a creation of a new SON. Peers that are aware of the updates

may republish their views in the updated SON by leaving and rejoining the

network according to the new schema. This implies that for a period of time

there will be two SONs (i.e., for the old schema and the updated) and peers

should gradually pass from one to another.

We can categorize data, peer’s view and schema updates according to

their frequency and their cost in terms of the number of messages exchanged

during these updates. Data updates are the most frequent updates that

occur. However, in defense to our design they have no impact on the DHT-

4 This operation is supported by the Chord protocol. Moreover, Chord provides
services like stabilize() and fix fingers() to support peers departure without any
prior notification.
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based schema index and thus no messages are exchanged. Peer view updates

are the next most frequent updates. When view updates occur, a small

number of messages must be exchange in order to reflect the changes into

the schema index. Finally, the most expensive updates in terms of messages,

are the schema updates but such updates are very rare compared to data

and peer’s view updates.

4.2 Lookup Service

In this section we present the lookup service which identifies all peers whose

views are horizontally (or vertically) subsumed by a query. The first step is

to lookup the view that specifies exactly the same fragment of the RDF/S

schema graph as the one requested by the input query. This view is called the

strict view and the peer that stores the (strict view, {peers}) pair, the initial

peer. The initial peer is identified through the lookup(strict view) service of

the original Chord protocol. The next step is to locate all other views that

are horizontally subsumed by the strict view through the invocation of a

sublookup() service issuing a sequence of lookup requests. The sequence in

which these lookup requests are performed is very important since there

must be no lookups that address preceding peers. The encoding and the

order preserving hash function guarantees that the key identifiers of all the

subsumed views will be greater than than the key identifier of the strict

view. As a result, all peers storing pairs of horizontally subsumed views will

succeed the initial peer in the Chord ring. Thus we avoid to travel all over
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Fig. 6 AdjSub Cube traversal for RDF/S schema fragments.

the Chord ring to reach the destination peer. It should be stressed that the

answer to a specific lookup request contains the peers whose views not only

match strictly but also are vertically subsumed by the query.

The main intuition for the sublookup() algorithm is that the sequence in

which the views are looked up is given by the AdjSub Cube (introduced in

Section 3). Different regions of the AdjSub Cube define different sequences

of lookups that must be issued to discover the views which are horizontally

subsumed by an input query. The lower part of Figure 6 illustrates the

three regions of the AdjSub Cube corresponding to the RDF/S schema graph

fragments of the three patterns, depicted in the upper part of the figure. The

fragments represented by solid edges and nodes in the middle part of the

figure, are essentially the views matching strictly the three query patterns.

In the first example (Figure 6a), the strict view to look up corresponds to

the RDF/S schema fragment, which comprises the default domain (class

C2) and range (class C3) of property p3. The second example (Figure 6b)

has the same strict view. The third example (Figure 6c) illustrates a query

pattern that requests all views that may have the class C7 as domain and
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the class C8 as range. In this case, the strict view is the one that has the

top property (not visible in the AdjSub Cube), since we need to check all

the properties defined in the corresponding RDF/S schema of the SON. For

the three patterns of Figure 6, starting from the cell that corresponds to the

schema triple of the strict view, the arrows designate the sequence in which

the next subsumed view is chosen from the AdjSub Cube. In order to always

choose the view that has the immediate larger key identifier, we traverse

the AdjSub Cube by first moving to the right (substituting the range class

of the triple), then down (substituting the domain class) and finally inwards

(substituting the property). In more complex patterns, for each substitution

of either the domain, range or property of each schema triple we substitute

recursively the domain, range and property of all of its remaining schema

triples. We next describe two versions of the sublookup() algorithm suitable

for a stateless and a statefull execution in a DHT-based network.

Figure 7 gives the pseudocode for the stateless version of the sublookup()

algorithm. When a query is issued, the initial peer is identified through a

lookup( strict view) request. Next, sublookup(strict view, strict view, initial

peer) is invoked. In order to guarantee that no view is looked up twice,

a substit() function checks if the given domain or range class has already

been substituted. For every substitution done to either the domain, range

or property of a schema triple, a new view V is created and looked up. The

peer that stores the new view V creates a new instance of the sublookup()

function and continues its execution until all schema triples of the view are
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sublookup(strict view Vstrict, current view V , peer pr)

1: for all triples t in V that are not marked and
the corresponding triple t′ in Vstrict

2: r′ ← low≺c(t′.range, t.prop.default range)
3: d′ ← low≺c(t′.domain, t.prop.default domain)
4: r ← next class of t.range on the AdjSub Cube
5: d ← next class of t.domain on the AdjSub Cube
6: p ← next property of t.prop on the AdjSub Cube
7: if substit(t.range) && (r ≺c r′)
8: t.range ← r
9: else if substit(t.domain) && (d ≺c d′)
10: if substit(t.range)
11: t.range ← r′

end if
12: t.domain ← d
13: else if (p ≺p t′.prop)
14: if (t.range �c p.default range || substit(t.range))

&& (t.domain �c p.default domain
|| substit(t.domain))

15: r′′ ← min≺c(t′.range, p.default range)
16: d′′ ← min≺c(t′.domain, p.default domain)
17: if substit(t.range)
18: t.range ← r′′

end if
19: if substit(t.domain)
20: t.domain ← d′′

end if
21: t.prop ← p
22: else
23: mark t and continue

end if
24: else
25: mark t and continue

end if
26: pr ← lookup(V )
27: sublookup(Vstrict, V, pr)
28: mark t

end for

Fig. 7 Stateless sublookup algorithm.

marked. The statefull sublookup() algorithm is a simplified version of the

stateless one. The initial peer instead of passing the execution of sublookup()

to the succeeding peers, it computes all the horizontally subsumed views and

issues series of lookup requests for each view. As we can see in Figure 8, an
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Fig. 8 Example of the execution on Chord.

advantage of the statefull version is that the whole execution is monitored

by the initial peer. Thus, in the case where a succeeding peer stores more

than one subsumed views, the statefull version will retrieve all views at

once, contrary to the stateless one contacting the same peer as many times

as the number of subsumed views it stores. However, in the statefull version

each new lookup request requires in principle more routing hops, since the

next subsumed view will succeed the previous one in the Chord ring. It is

worth noticing that the stateless lookup service scans the Chord ring in a

highly parallel way in order to process a query. We believe that for queries

involving a large number of peers the most important factor is the degree

of parallelization of the lookup requests rather than the absolute number

of routing hops. Moreover, such a parallelization reveals in a natural way

the design choices that must be taken when an interleaved execution of the

routing and planning phases is considered.

To conclude, in a network of N peers, each lookup requires O(log N)

routing hops. Therefore, the total number of routing hops required to lo-

cate all peer bases that can contribute to the evaluation of a query is:
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O(log N) to locate the initial peer plus S × O(log N) to locate the S sub-

sumed views, where S depends on the size of the involved subsumption

hierarchy. However, especially for views with a small number of schema

triples, the subsumed views are located in peers that are close to each other

in the Chord ring, thus as we will see in the sequel much less than O(log N)

routing hops are required in practice for each lookup.

5 Experimental Evaluation

The goal of the experimental results presented in this section is to demon-

strate the scalability of the DHT-based schema index with respect to the

distribution of the keys for the encoded peer views, as well as to estimate

the number of routing hops required to locate peer views that are subsumed

by an input query. We conducted our experiments for different sizes of peer

networks and views with varying number of schema triples and structural

form (linear, tree or graph form). The RDF/S schemas that were used in

our experiments were created synthetically based on real application exam-

ples [18]. Our experiments rely on the original Chord protocol simulator [7],

modified to support the distributed index of RDF/S fragments, as well as to

implement the two versions of the lookup service presented in Section 4.2.

The stabilization algorithm of the Chord protocol and the key reallocation

algorithms when peers join, leave or die unexpectedly, were kept intact.

Thus, we considered that the system was formed and stabilized before any

view was stored or looked up.
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Schema #Classes #Prop. #Fragm.

sch.1 27 30 6300

sch.2 25 23 6000

sch.3 22 18 5200

sch.4 19 15 5000

Table 1 Structural characteristics of the synthetic RDF/S schema graphs.

An important characteristic of the proposed encoding function (based

on the AdjSub Cube) is related to the distribution of the views (keys) over

the DHT nodes. For this purpose we stored fragments of 4 different RDF/S

schema graphs on networks of varying size. Each RDF/S schema graph had

more than 5000 distinct fragments5. Table 1 depicts the number of classes

and properties of each RDF/S schema graph, as well as the number of

distinct fragments that were extracted from each schema. The total number6

of views stored in each network was 22500. The size of the network varied

5 Since our query patterns capture only the structure and the semantics of an
RDF/S schema (and not arbitrary joins on property values) the views considered
here correspond to distinct fragments of a specific RDF/S schema.

6 Given that the discriminating factor in our experiments is the ratio of views
per peers, we keep constant the number of views stored in each network.
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from 500 to 20000 peers. Table 2 presents the average number of views that

should be stored per peer, the weighted average of views that are stored per

peer, as well as the standard deviation and the maximum number of views

per peer.

#Peers Avg. W.Avg. Std.D. Max

500 45.16 45.176 45.21 324

1000 22.5 22.24 21.62 162

2000 11.25 11.23 11.87 92

5000 4.5 4.51 5.27 61

10000 2.25 2.17 2.84 41

20000 1.12 1.11 1.72 21

Table 2 Distribution of views for networks of varying size (m = 32).

By examining the measurements of Table 2 one can observe that in all

cases the weighted average is very close to the theoretical average. In addi-

tion, for large networks with more than 2000 peers, the standard deviation

is acceptable. However, for networks of small size (i.e., 500 and 1000 peers)

although the weighted average is still close to the theoretical average, the

standard deviation is high. In small networks there are few peers that store

no views and also few peers that store a high number of views. The skewed

view distribution in these few peers (reflected in the standard deviation)

is due to the fact that the unique identifiers of the views comprising only

one schema triple, have small hash values thus they are stored exclusively

on the peers placed at the beginning of the Chord ring. Moreover, peers

that are placed at the end of the Chord ring come with no views. Figure 9

depicts the exact distribution of views over peers for networks of size 500,

1000, 2000 and 10000 peers. From the above figure it is clear that in each
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case less than 5 peers store an increased number of views. To overcame this

problem one can force the peers that are placed at the end of the Chord ring

to hash their identifier in the beginning of the Chord ring, and thus make

more peers responsible for views with few schema triples. Alternatively, a

simpler solution for small networks will be to consider a smaller identifier

circle (i.e., by decreasing m of modulo 2m) and thus place peers closer to

each other. In the experiments presented so far we have set m to be 32.

Table 3 show the experiments conducted with m = 12 for small networks,

where the standard deviation has dropped to less than 10.

#Peers Avg. W.Avg. Std.D. Max

500 45.16 44.94 9.86 89

1000 22.5 22.41 8.27 63

Table 3 Distribution of views (m = 12).
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The four graphs of Figure 10 illustrate the total number of routing hops

per number of subsumed views involved in the evaluation of a query pattern,

for both the statefull and stateless versions of the lookup algorithm. In

addition, in each graph we illustrate both the theoretical (S × log n) and

experimental (S× 1
2 × log n) number of routing hops required by the original

Chord [7] protocol. Clearly, the two versions of the lookup service decrease

the number of routing hops up to 50% than those required by Chord. For

networks of small size, the statefull lookup service outperforms the stateless

one since it requires less than half routing hops for large views.

This can be easily justified by the fact that the stateless algorithm fails

to identify the peers that can answer more than one subsumed view at once,

and therefore it contacts the same peers over and over. This is not the case

of the statefull lookup since the initial peer gathers all views from a peer

and never contacts the same peer twice. However, when the network grows,

the statefull version exhibits poor performance. As a matter of fact, as the

network grows it becomes more unlikely to find peers storing more than one

view, hence the advantages of the statefull approach fade out. On the other

hand, the number of hops required by the stateless version only slightly

increases when the size of the network doubles and clearly outperforms the

statefull one when the ratio views per peer falls bellow 1.

The main conclusions drawn from our experiments are: (a) as the net-

work grows, the DHT-based schema index succeeds to distribute the en-

coded views over all peers in the network and (b) the proposed lookup
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algorithms outperform the lookup service of the original Chord. Moreover,

the stateless version of the lookup algorithm is more suitable for large net-

works as it scales gracefully, compared to the statefull one that is more

beneficial for small networks. One can then decide, depending of the size of

the network which lookup version to use.

6 Related Work

Closely related to our work are DHT-based PDMS addressing routing issues

for queries over RDF, XML and relational databases. RDFPeers [6] is a

distributed RDF repository based on an extension of Chord, namely MAAN,

that stores each triple at three places in the network by applying a globally

known hash function to its subject, predicate and object (i.e., data triple).

A DHT index is built over RDF triples which ignores the semantics of the

RDF/S schema during query routing. Such an extensional index extremely

increases the total amount of data stored on the network and comes with

a significant message overhead when triples are likely to frequently change.

Finally, to overcome the increased workload of peers storing triples with

subject popular URIs, RDFPeers consider a threshold after which it refuses

to store any triples. In contrast, our framework favours the scalability, thus

there will be no increased workload in a single peer and no data will be lost.

In [13], a distributed catalog for XML data is proposed along with ap-

propriate load balancing techniques to fairly distribute the catalog service

and adapt the system’s behaviour to the query workload. In the DHT-based
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catalog keys are XML fragments associated with a set of structural sum-

maries (i.e., the XPaths leading to these fragments). A B+-tree is used by

each peer to match a given XPath query against the stored summaries. The

system can then locate which peers can answer an entire XPath query us-

ing the leaf element as the key. In the case of an XPath query of the form

p = /a1[b1]/ . . . /an[bn]op value where each bi is in turn a path, the system

must first extract all k linear paths and invoke the lookup service for each

of them. In contrast to this system we do not distinguish between linear,

tree or graph queries and thus in either cases the lookup service is invoked

only once and O(log N) hops are required (without considering subsumed

view) to locate peers that can answer the query. Also, there is no need for

a search over a secondary index structure since our index is build directly

on the RDF/S schema fragments. For load balancing, the authors propose

techniques of splitting and replicating the catalog, while in our framework

these are done a priory.

A unifying framework for relational query processing over structured

P2P networks has been proposed in [27]. Each tuple of a relation R(DA1, . . .

,DAk) is stored k + 1 times over the network: one copy of the tuple with

consistent hashing over it’s primary key, and k replicas distributed in the

peers according to an order-preserving hash function based on its k at-

tributes. The authors also introduce the notion of Range Guards, i.e., a

number of peers which keep additional replicas of all tuples whose values

for a specific attribute fall in a specific range. They are used to evaluate
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range queries over relational data by avoiding costly traversals of the entire

Chord ring. The two major drawbacks of this system are (a) the need to

replicate data several times and thus increasing the maintaining cost, and

(b) multi-relation/attribute or range queries are costly to route (in some

cases needing O(N) hops). In our framework, range queries over schema

triples are efficiently evaluated since the proposed RDF/S fragment encod-

ing ensures that they will be indexed closed to each other on the Chord

ring, without the need of replication and range guards. Finally, in [21] a

family of order preserving hash functions were presented, along with a tun-

able data replication mechanism which allows trading off replication costs

for fair load distribution. Since our framework is independent from the order

preserving hash function, such mechanisms can be implemented on top of

our framework to support (a) workload balance during query evaluation and

(b) data replication facilities. Notice that these data management services

are independent of the advertisement and routing algorithms presented in

this paper.

7 Conclusion

In this paper, we presented a DHT-based framework to efficiently route ex-

pressive RDF/S queries. We introduced a succinct representation of RDF/S

schema graphs, called AdjSub Cube, for encoding arbitrary RDF/S schema

fragments. This encoding ensures a fast view/query subsumption checking

in order to understand the partitioning of data in remote peer bases. Based
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on this encoding, we designed a DHT-based schema index to distribute view

advertisements over peers. Additionally, we implemented a lookup service

for identifying which peers can completely or partially contribute to the

answer of a graph query.

We experimentally demonstrated that the proposed DHT-based schema

index scales gracefully for very large number of peers. Moreover, we com-

pared the routing hops required by a distributed and a centralized ver-

sion of our lookup service versus the routing hops required by the original

Chord protocol. The main conclusion drawn from our experiments is that

our lookup service requires less than half of the routing hops required by

the original Chord protocol. The results presented in this paper can be eas-

ily adjusted to other DHT-based protocols and schema formalisms defining

SONs. For example, we can build an AdjSub Cube for encoding fragments

of an XML schema tree.

We intend to extend our work with query planning capabilities of the

peer views returned by the lookup service. In particular, we are interested to

an interleaved execution of the routing and planning algorithms in several

rounds, allowing to obtain as fast as possible the first results of a query

available in peer bases. This interleaved execution not only favors intra-peer

processing, which is less expensive than the inter-peer one, but additionally

exhibit the benefit of a parallel execution of the query routing, planning

and evaluation in different peers [25]. Finally, we intend to investigate the

potential of a P2P infrastructure based on distributed trees [10,1,16], for
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implementing the AdjSub Cube, in order to further reduce the number of

hops required by our lookup service.
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