
Querying Tree-Structured Data Using

Dimension Graphs

Dimitri Theodoratos1 and Theodore Dalamagas2

1 Dept. of Computer Science
New Jersey Institute of Technology

Newark, NJ 07102
dth@cs.njit.edu

2 School of Electr. and Comp. Engineering
National Techn. University of Athens,

Athens, GR 15773
dalamag@dblab.ece.ntua.gr

Abstract. Tree structures provide a popular means to organize the in-
formation on the Web. Taxonomies of thematic categories, concept hi-
erarchies, e-commerce product catalogs are examples of such structures.
Querying multiple data sources that use tree structures to organize their
data is a challenging issue due to name mismatches, structural differ-
ences and structural inconsistencies that occur in such structures, even
for a single knowledge domain. In this paper, we present a method to
query tree-structured data. We introduce dimensions which are sets of
semantically related nodes in tree structures. Based on dimensions, we
suggest dimension graphs. Dimension graphs can be automatically ex-
tracted from trees and abstract their structural information. They are
semantically rich constructs that provide query guidance to pose and
evaluate queries on trees. We design a query language to query tree-
structured data. A key feature of this language is that queries are not
restricted by the structure of the trees. We present a technique for eval-
uating queries and we provide necessary and sufficient conditions for
checking query unsatisfiability. We also show how dimension graphs can
be used to query multiple trees in the presence of structural differences
and inconsistencies.

1 Introduction

Tree structures provide a popular means to organize the information on the
Web. Taxonomies of thematic categories, concept hierarchies, e-commerce prod-
uct catalogs are examples of such structures. Since the XML language [3] has
become the standard data exchange format on the Web, organizing data in tree
structures has been vastly established. Even if data is not stored natively in
tree structures, export mechanisms make data publicly available in tree struc-
tures to enable its automatic processing by programs, scripts, and agents on the
Web [11]. Querying capabilities on these structures are provided through path

expression queries. Such queries are formed using some of the query languages
proposed in the literature like XPath [4] and XQuery [5].

Querying multiple data sources that use tree structures to organize their
data is a challenging issue due to name mismatches, structural differences and
structural inconsistencies that occur in such structures, even for a single knowl-
edge domain. Name mismatches appear because tree structures lack semantic
information. For example, laptop computers might be referred to as notebooks
in one product catalog but as portables in another catalog. In this paper, we
do not focus on this issue and we assume that it is resolved using well-known
schema matching techniques [20]. Structural differences and, far more impor-
tant, structural inconsistencies appear because of the different possible ways
of organizing the same data in tree structures. For example, a structural dif-
ference exists when a category appears in a product catalog but does not ap-
pear in another. A structural inconsistency appears when a product catalog for
notebooks classifies new, SONY notebooks with 10in display in the path /note-
books/new/SONY/10in, while another catalog classifies the same products in the
path /SONY/notebooks/10in/new.

A naive approach to cope with structural differences and inconsistencies when
querying multiple tree structures is to generate different versions of the initial
query, considering different subsets of nodes involved in its path expressions and
their different orderings. Clearly this is not efficient due to the large number of
queries that need to be generated. Another approach is to set up a global struc-
ture and define mapping rules between this structure and the local structures
[13]. Such approaches require extensive manual effort, since the global schema is
difficult to construct and the rules should be hard-coded in the application.

In this paper, we suggest a novel approach to query tree structured data. Our
approach exploits semantic information for nodes of the trees which are called
here value trees. We introduce the concept of a dimension that groups together
semantically related values (nodes). The different dimensions of a value tree
are related through precedence relationships incurred by the parent-child and
ancestor-descendant relationships of their nodes. We capture these precedence
relationships between dimensions of a value tree into the concept of a dimen-
sion graph for a value tree. Besides abstracting structural information of value
trees, dimension graphs provide also semantic guidance in posing and evaluating
queries. Query conditions involve dimensions, and thus query formulation is not
dependent on the structure of value trees. The system uses the dimension graph
of the value tree to identify orderings of the values that can possibly exist in
the value tree. Only these value orderings will be used to compute the answer of
the query on the value tree. This step of the computation of the query answer is
performed before the query evaluation reaches the value tree which is, in general,
much larger than its dimension graph.

Contribution. The main contributions of the paper are the following:
• We introduce dimensions to record semantic information for the nodes of

value trees and dimension graphs to capture structural information on value
trees. Dimension graphs can be automatically extracted from value trees.

• We design a query language to query value trees. Queries are not cast on the
structure of a specific value tree, since they are issued on their dimensions.
The user can optionally specify parent-child and/or ancestor-descendent re-
lationships between dimensions in a query.

• We show how queries can be evaluated on value trees, making use of dimen-
sion graphs to determine orderings of dimensions that can possibly generate
non-empty answers. These dimension orderings are then used for generating
path expressions that are evaluated on value trees.

• We introduce the concept of query unsatisfiability which identifies a query
on a dimension graph that has an empty answer on any value tree underlying
this dimension graph. We provide necessary and sufficient conditions for a
query to be unsatisfiable.

• Finally, we show how dimension graphs can be used to query multiple value
trees in the presence of structural differences and inconsistencies.

Outline. The rest of the paper is organized as follows. The next section discusses
related work. In Section 3, we introduce dimensions and we define dimension
graphs for value trees. Section 4 presents the query language used to pose queries
on dimension graphs. It also shows how queries can be checked for unsatisfiability
and how they are evaluated on the underlying value trees. Finally, Section 5
concludes the paper and presents further work. Due to lack of space, proofs of
propositions are omitted. They can be found in the full version of the paper.

2 Related Work

Many systems support query evaluation of multiple data sources, using a pre-
defined global structure and defining mapping rules between this structure and
the local structures used in the sources. The Xyleme system[13] copes with the
problem of integrating XML data sources using XML views. In the Agora sys-
tem[18], XQuery expressions over a given global XML schema are translated to
SQL queries on local data sources. In [7], query evaluation is based on mapping
rules from global to local schemas in the form of path-to-path correspondences.
In [12], YAT queries are posed on a global schema and evaluated in the data
sources using YAT mapping rules. In [19], Xpath queries are formed and refor-
mulated to queries on the local catalogs, given a pre-defined DTD. Our approach
differs than the aforementioned techniques in that it does not require the manual
definition of hard-coded mapping rules between the virtual tree structure and
the local structures.

Relevant to our work are also techniques where schema descriptions are au-
tomatically extracted from local data sources. XClust [17] generates DTDs to
act as global schemas, applying clustering methods to detect similar DTDs prior
to their integration. Techniques that extract DTDs from collections of XML
documents are also presented in [14]. In [8], a grammar-based model is used to
integrate DTDs. Contrary to our approach, these papers do not deal with query
evaluation.

Schema-based descriptions for data with little or no apparent structure have
also been suggested for semistructured databases [6]. Dataguides are introduced
in [15]. They are structural summaries for semistructured data, useful for for-
mulating queries, storing statistics about paths and nodes, and enabling query
optimization. In [10], graph schemas are introduced to formulate, optimize and
decompose queries for semistructured data. These approaches do not provide
a direct solution to the problem of structural inconsistencies and differences in
data sources that we address here. Further, they are purely syntactic. In contrast
to our approach, they do not exploit semantic information.

Integrating tree-structured data is also a popular issue in e-commerce appli-
cations [9, 16]. Facet classification hierarchies [1, 2] also exploit sets of semanti-
cally related categories. In [21], the authors present faceted taxonomies for Web
catalogs. None of these works suggest query evaluation techniques.

3 Data Model

In this section we present a data model for tree-structured data. We introduce
a type of trees, called value trees, to represent tree-structured data. We also
discuss the notion of a dimension, based on which a partitioning can be enforced
on value trees.

3.1 Value Trees and Dimensions

We assume a set of values V that includes a special value r. The elements of V
are used to build value trees.

Definition 1. A value tree is a rooted node-labeled tree T , such that:
(a) Each node label in T belongs to V .
(b) Value r labels only the root of T .
(c) There are no sibling nodes in T labeled by the same value. ¤

Figure 1 shows examples of value trees T1, T2 and T3 (for the moment, the
dotted labeled rectangles that group the nodes should be ignored). These value
trees are parts of taxonomies used to categorize products related to computer
equipment. The same value may label multiple nodes in a value tree. For example,
value HP labels two nodes in T2. Notice that there are structural differences and
inconsistencies between value trees T1, T2 and T3, although they refer to the
same knowledge domain. For example, there are nodes labeled Multimedia or
Servers in T2 and T3, even though no such nodes appear in T1. Also, a node
labeled Used is a child of a node labeled Sony in T2, although the opposite holds
in T3. Note that we assume that naming mismatches have been resolved. For
instance, nodes labeled by the same value in different trees refer to the same real
world concept.

Values in set V can be grouped to form dimensions. Intuitively, a dimension
is a set of semantically related values. For instance, values Mac, Acer and Compaq
can be interpreted as values of a dimension brand. A semantic interpretation of

pc_category

pc_type

pda_type

brand

mobile_type

accessories

R

Notebooks

Custom
 Ultralight
 Multimedia

Desktops

10''

Servers

8''

PDAs

r

Mac
 HP
Sony
 IBM
Sony

pc_type

pc_category

mobile_type

brand

HP
 IBM

mobile_type
 brand

R

Notebooks

New
 Used
 Servers

Desktops
 PDAs

r

Mac
 HP
Sony

pc_type
 mobile_type

brand

HP
 IBM
Mac
 Sony

Dell
 Sony

Used
 New
 Used

condition

condition
 brand

R

brand

Notebooks
 Desktops
 PDAs

r

Mac

Gateway

HP

Mac

Acer

Compaq

Sony

Cases

Pocket PC

Palm

Used

Used

condition

New
 Used

New
 Used
New

condition

Value Tree
T

1

(a)

Value Tree
T

2

(b)

Value Tree
T

3

(c)

Multimedia

HP
 IBM

brand

condition
pc_category

Fig. 1. Value trees T1, T2 and T3

values is imposed by a user. A dimension can also be seen as a property with
values.

Definition 2. Let V be a set of values that includes a specific value r. A
dimension set over V is a partition D of V that includes a set R whose single
element is value r. Each element of D is called dimension. ¤

Figure 2 shows a dimension set D and the names of its dimensions. We use
these dimensions and the value trees of Figure 1 as a running example in this
paper.

A dimension set also partitions the nodes of a value tree. We are interested in
value trees where every path from the root to a leaf involves values from distinct
dimensions. To describe this type of value trees we introduce the concept of tree

conformity with respect to a dimension set.

Definition 3. Let D be a dimension set over a value set V . A value tree T
conforms to D if and only if there are no two nodes on a path in T labeled by
values that belong to the same dimension in D. ¤

Consider for example the value trees T1, T2 and T3 of Figure 1. Dotted
rectangles labeled by dimensions are used to show the partitioning of nodes into
dimensions. The same dimension might label different rectangles in a value tree.

Dimension Set

D

= {
R
, pc_type, brand, mobile_type, pda_type, accessories, pc_category, condition }

Dimensions:
 pc_type = { Notebooks, Desktops }

brand = { Mac, Sony, HP, IBM, Gateway, Acer, Compaq }

mobile_type = { PDAs, 10'', 8'' }

pda_type = { Palm, Pocket_PC }

accessories = { Cases }

pc_category = { Ultralight, Multimedia, Server }

condition = { New, Used }

Fig. 2. A dimension set and its dimensions

In this case, this dimension comprises the nodes confined by all these rectangles.
Dimension pc type in T1 refers to types of personal computers and includes nodes
labeled by values Desktops and Notebooks. Dimension brand in T3 refers to brand
names and includes nodes labeled Mac, Sony, HP, IBM and Dell. All trees T1, T2,
and T3 conform to the dimension set D shown in Figure 2.

Nodes labeled by values of the same dimension need not be in the same level
of a value tree. For example, in T2, the nodes labeled 10” and 8” of dimension
mobile type are not in the same level as the node labeled PDAs of the same
dimension. A value of a dimension may not appear in a value tree. For example,
the value Ultralight of dimension pc category does not appear in value tree T3

nor in T1, although it appears in T2. Further, a dimension may have no value in
a value tree. For instance, no value of pc category appears in T1.

In the following we assume that a dimension set D is given and all value trees
conform to D.

3.2 Dimension Graphs

Values of one dimension can label children or descendants of nodes labeled by
values of any other dimension in a value tree. However, there are cases where
values of one dimension do not label descendants of nodes labeled by values of
some other dimension. For example, none of the values Pocket PC and Palm of di-
mension pda type labels a descendant of the nodes labeled by the value Desktops
or Notebooks of dimension pc type in the value tree T1 of Figure 1. To capture
this type of relationship between dimensions in a value tree, we introduce the
concept of a dimension graph. Dimension graphs can be automatically extracted
from value trees and abstract their structural information. Moreover, they pro-
vide semantic query guidance to pose and evaluate queries on value trees (see
subsequent sections). Before we give the formal definition of a dimension graph
with respect to a value tree, we define dimension graphs as general structures
and we present the notion of a dimension precedence.

Definition 4. A dimension graph over dimension set D is a directed graph
whose nodes are dimensions in D. ¤

A path in a dimension graph is a sequence D1, . . . , Dk of distinct nodes such
that there is a directed edge from Di to Di+1, where 1 ≤ i ≤ k − 1.

Definition 5. Let T be a value tree over dimension set D. A dimension Di ∈ D
precedes a dimension Dj ∈ D in T if and only if there are nodes ni and nj in
T labeled by values vi ∈ Di and vj ∈ Dj , respectively, such that nj is a child
node of ni in T . ¤

For example, dimension pc type precedes dimension brand in T1 of Figure 1,
since a node labeled Mac (a value of brand) is a child of a node labeled Desktops
(a value of pc type).

Based on the definitions of dimension graphs as general structures and the
notion of dimension precedence, we proceed to define formally dimension graphs
with respect to a value tree.

Definition 6. Let T be a value tree over dimension set D. A dimension graph

of T is a dimension graph (N,E), where N is a set of nodes and E is a set of
edges defined as follows:
(a) There is a node D in N if and only if there is a value in T that belongs to

dimension D.
(b) There is a directed edge in E from node Di to node Dj if and only if dimension

Di precedes dimension Dj in T .
If G is a dimension graph of a value tree T , we say that T underlies G. ¤

Consider for example the value trees T1, T2 and T3 of Figure 1. Figure 3
shows the dimension graphs G1, G2 and G3 of T1, T2 and T3, respectively. There

pda_type

mobile_type

accessories

condition

R
 R

pc_type

mobile_type

pc_category

brand

pc_type

brand

R

pc_type

brand

mobile_type

condition

pc_category

Dimension graph
G

2

(b)

Dimension graph
G

3

(c)

Dimension graph
G

1

(a)

Fig. 3. Dimension Graphs

is an edge from dimension mobile type to dimension pda type in G1, since a node
labeled Palm (a value of pda type) is a child of a node labeled PDAs (a value of
mobile type) in value tree T1. Looking at the lower left part of value tree T3, we
note that a node labeled Mac (a value of brand) is a child of a node labeled New

(a value of condition). However, looking at the lower right part of T3, a node
labeled New is a child of a node labeled Dell (another value of dimension brand).
Thus, dimension brand precedes dimension condition and vice versa. As a result,
there is an edge from dimension condition to dimension brand and an edge from
brand to condition in G3 which are compactly shown in the figures by a double
headed edge.

The dimension graph of a value tree has a particular form. The following
proposition describes some of its properties.

Proposition 1. Consider a dimension graph G of a value tree T over a dimen-
sion set D. Let v1, . . . , vk be values from the distinct dimensions D1, . . . ,Dk ∈
D, respectively. If v1, . . . , vk label, in that order, nodes on a path in T , then
D1, . . . ,Dk appear in that order on a path from the root in G. ¤

4 Queries

We present in this section a simple query language and we outline how queries can
be evaluated. Our intention is not to provide a full-fledged language. For instance,
it does not include selection predicates. Our goal is to show how dimensions can
be used to query value trees. Queries in this language are defined on dimension
graphs. Roughly speaking, a user poses a query by annotating some dimensions in
a dimension graph with permissible sets of values. The answer comprises root-to-
leaf paths on the underlying value tree that involve one value from each of these
value sets. An interesting feature of the language is that the user has the choice
of not specifying or partially specifying parent-child and ancestor-descendant
relationships between the annotated dimensions in a query. The system can
identify possible orderings of dimensions in the paths of the answer based on
the dimension graph only. These orderings are used as patterns for constructing
the path expressions that compute the answer of the query on the underlying
value tree. All the other orderings of dimensions are excluded from consideration
before the computation of the query answer reaches the value tree.

4.1 Syntax

A query on a dimension graph comprises annotations of the graph dimensions
with sets of values and specifications of precedence relationships between the
graph dimensions.

Definition 7. Let G be a dimension graph over a dimension set D. A query Q
on G is a pair (A,P), where:
(a) A is a set of expressions of the from Di = Ai, where Di is a dimension in

G different than R, and Ai is a set of values of dimension Di or a question
mark (“?”). If Di = Ai belongs to A we say that Di is annotated in Q and
Ai is called annotation of Di in Q. Even if not present in A, dimension R is
assumed to be an annotated dimension, annotated with the singleton {r}. A
dimension can be annotated only once in a query.

(b) P is a set of precedence relationships which are expressions of the form
Di → Dj or Di ⇒ Dj , where Di and Dj are annotated dimensions of Q.

Sets A and P can be empty. ¤

We graphically represent a query Q = (A,P) on a dimension graph G by labeling
its nodes by their annotations in A and by adding to it a single (resp. double)
arrow from node Di to node Dj for every precedence relationship Di → Dj

(resp. Di ⇒ Dj) in P. Note that arrows are different than directed edges. The
unqualified word “arrow” refers indiscreetly to a single or double arrow.

Consider for instance the dimension graphs G1,G2, and G3 of Figure 3. Figure
4 shows the graphical representation of different queries on these dimension
graphs. Annotated nodes are shown in the figures with black circles. Precedence
relationships are shown with single or double arrows from one node to another.

pda_type

mobile_type

accessories

R
R

pc_type = ?

brand =

{Sony, IBM}

mobile_type

condition =

{used}

pc_type =

{Desktop}

brand =

{Mac, Sony}

pc_category
 condition =

 {used}

R

pc_type = ?

mobile_type

pc_category

brand =

{Sony, IBM}

Query
Q

1

 on
 G

1

(a)

Query
 Q

2

 on
 G

2

(b)

Query
 Q

3

 on
 G

3

(c)

Fig. 4. Graphical Representation of Queries

Figure 4(a) represents query Q1 = (A1,P1) on dimension graph G1, where
A1 = {brand = {Mac, Sony}, pc type = {Desktops}} and P1 = ∅. In Q1 we do
not specify any precedence relationships between the annotated notes.

In the following we often identify a query with its graphical representation.
Figures 4(b) and (c) represent queries Q2 and Q3. A double arrow from node
pc type to brand denotes the precedence relationship {pc type ⇒ brand} in Q2.

4.2 Semantics

The answer of a query on a value tree T is a set of root-to-leaf paths in T
compactly represented as a subtree of T .

Definition 8. Let G be a dimension graph of a value tree T over a dimension
set D, and Q be a query on G. The answer of Q on T is the maximal3 subtree
T ′ of T such that:
(a) T ′ and T have the same root r.

3 Maximality is meant with respect to the number of nodes or edges.

(b) Every leaf node of T ′ is a leaf node of T .
(c) Every path from the root to a leaf node in T ′ includes one value from every

value set annotating a node in Q.
(d) Every path from the root to a leaf node in T ′ includes one value from every

dimension annotated with a question mark in Q.
Therefore, for every annotated node (with a value set or a question mark)
in Q, there is one value for the corresponding dimension appearing in every
path from the root to a leaf node in T ′.

(e) For every path p from the root to a leaf node in T ′, and for every precedence
relationship Di → Dj (resp. Di ⇒ Dj) in Q, the value for Dj is a child (resp.
descendent) of the value for Di in p.

If there is no such a subtree T ′, we say that the answer of Q on T is empty.
Symbol ǫ denotes an empty answer. ¤

Annotating a node with a “?” in a query is different than not annotating this
node at all. In contrast to a non-annotated node, a node that is annotated with
a “?” places a value of the corresponding dimension in every root-to-leaf path
in the answer of the query.

Consider the queries Q1, Q2 and Q3 on the dimension graphs G1,G2, and G3,
respectively, graphically shown in Figure 4. Consider also the value trees T1, T2

and T3 of Figure 1. Figure 5 shows the answers T ′

1, T ′

2 and T ′

3 of Q1, Q2 and Q3

on T1, T2 and T3, respectively.

Value tree
 T'

1

(a)

Value tree
 T'

2

(b)

Value tree
 T'

3

(c)

pc_type

brand

R

Desktops

r

Mac

Sony

Notebooks

Ultralight

Desktops

Servers

8''

r

IBM
Sony

pc_type

pc_category

brand

IBM

mobile_type
 brand

R

Used

condition

Used

Used

condition

Used

r

brand

Sony

condition

R

Notebooks
 Desktops

pc_type

Used

Multimedia

pc_category

brand

IBM

Fig. 5. Query Answers

Further, consider the query Q4 = (A4,P4), where: A4 = {pc type =
{Desktops},brand = {HP, Gateway}}, and P3 = {pc type → brand} on the di-
mension graph G1 shown in Figure 3. In the value tree T1 shown in Figure 1(a)

there are values of dimension brand that are children of values of dimension
pc type. However, there is no root-to-leaf path that involves values Desktops and
HP, or Desktops and Gateway. Therefore, the answer of Q4 on T1 is empty.

4.3 Unsatisfiable Queries

A query on a dimension graph G is called unsatisfiable if its answer is empty
on every value tree underlying G. Otherwise, it is called satisfiable. Detecting
the unsatisfiability of a query saves its evaluation on a value tree (which, in any
case, produces an empty answer.) In general, this value tree is much larger than
its dimension graph which might be needed for detecting the unsatisfiability of
the query. The graphical representation of a query provides some intuition on
unsatisfiable queries.

Consider the dimension graphs G2 and G3 of Figure 3, and the queries Q5 on
G3, and Q6 and Q7 on G2 graphically represented in Figure 6. These queries are
unsatisfiable.

R

pc_type

= ?

brand

= ?

mobile_type

condition

pc_category

Query
Q

6

on
G

2

(b)

condition

R

pc_type = ?

mobile_type

= ?

pc_category

Brand = ?

Query
 Q

5

on
G

3

(a)

R

pc_type

brand

mobile_type = ?

condition

 =?

pc_category

Query
Q

7

on
 G

2

(c)

= ?

Fig. 6. Unsatisfiable Queries

In query Q5 of Figure 6(a), there is no path from the root of G3 that involves
all the annotated nodes. By Proposition 1 there is no root-to-leaf path in a value
tree underlying G3 that involves values for the annotated dimensions in Q5.

In query Q6 of Figure 6(b), there is a path from the root of G2 through all
the annotated nodes (e.g. the path (R, pc type, pc category, brand)). However,
there are two outgoing single arrows from the same node (node pc type). Clearly,
no two values can be children of the same node in a root-to-leaf path of a value
tree underlying G2.

In query Q7 of Figure 6(c), there is also a path from the root of G2 through all
the annotated nodes (e.g. the path (R, mobile type, brand, condition)). However,
there is a double arrow from node condition to node mobile type in Q3 and no
path from node condition to node mobile type in G2. By Proposition 1 there is no
root-to-leaf path in a value tree underlying G2 that involves a value for dimension
condition preceding a value for dimension mobile type.

More generally, we can show the following result that provides sufficient con-
ditions for a query to be unsatisfiable.

Proposition 2. A query Q on a dimension graph G is unsatisfiable if one of the
following conditions holds:
(a) Arrows in Q form a directed cycle.
(b) There are precedence relationships D → Di and D → Dj or precedence

relationships Di → D and Dj → D in Q (Di 6= Dj).
(c) There is a precedence relationship Di → Dj in Q but no edge from node Di

to node Dj in G.
(d) There is a precedence relationship Di ⇒ Dj in Q but no edge from node Di

to node Dj in the transitive closure of G (in other words, no path from node
Di to node Dj in G).

(e) The annotated nodes in Q are not on a path from the root of G. ¤

In order to provide necessary conditions for query unsatisfiability, we intro-
duce the concept of an answer path of a query.

Definition 9. Let Q be a query on a dimension graph G. An answer path of Q
in G is a path p in G from the root of G such that:
(a) All the annotated dimensions in Q are on p, and p ends on an annotated

dimension of Q.
(b) If there is a precedence relationship Di → Dj (resp. Di ⇒ Dj) in Q, then

Dj is a child (resp. descendent) of Di in p. ¤

Consider for instance the query Q2 on dimension graph G2 and the query Q3

on dimension graph G3, which are shown in Figures 4(b) and 4(c), respectively.
One can identify the following answer paths for query Q2 in G2:

R, pc type, brand, condition
R, pc type, pc category, brand, condition
R, pc type, pc category, mobile type, brand, condition

The answer paths for query Q3 in G3 are:

R, pc type, condition, brand
R, pc type, condition, pc category, brand
R, pc type, pc category, brand, condition

The following proposition provides necessary and sufficient conditions for a
query to be unsatisfiable.

Proposition 3. A query Q on a dimension graph G is unsatisfiable if and only
if there is no answer path of Q in G. ¤

4.4 Query evaluation

When evaluating a query, we first check it for satisfiability. If a query is satis-
fiable, we proceed to compute its answer on a value tree in three steps. In the
first step, we compute all the answer paths of the query. In the second step,

we generate path expressions based on the answer paths. In the third step we
evaluate the path expressions on the value tree and compose the answer of the
query.

To represent path expressions, we use a notation similar to that of XPath [4].
The fragment of XPath we use involves node names (vi), child axis (/), descen-
dant axis (//), wildcards (∗), unions (|). The expression (v1| . . . |vm) represents
any node name in the set {v1, . . . , vm}. For a dimension D, we use the expression
∗D as an abbreviation for the expression (v1| . . . |vn), where {v1, . . . , vn} = D.

Given an answer path, we construct a corresponding path expression as fol-
lows. Let R,D1, . . . ,Dk be an answer path of a query Q. The corresponding path
expression has the form r/θ1/ . . . /θk, where, for i = 1, . . . , k,

θi =

{

(v1| . . . |vm) if Di is annotated with the value set {v1, . . . , vm}
*Di

if Di is annotated with a “?” or if Di is not annotated

Notice that even though nodes annotated with a “?” are treated the same
way as non-annotated ones in the construction of path expressions for a query,
they affect differently the answer of a query since they are taken into account in
the identification of answer paths for that query.

Before showing what the result of a path expression on a value tree is, we
introduce the concept of a merge of a set of value trees (or paths). Let T1, . . . , Tk

be a set of value trees having the same root r. The merge of T1, . . . , Tk, denoted
T1 ∪ . . .∪ Tk, is a minimal4 value tree which has T1, . . . , Tk as subtrees. It is not
difficult to see that this value tree is unique.

We show now what is the result of a path expression on a value tree. Let
e be a path expression and T be a value tree. Let also P be the set of paths
from the root of T to the leafs of T that satisfy e. The result res(e, T) of a path
expression e on a value tree T is the value tree

⋃

p∈P p. Note that the result of a
path expression is different than the result of the same XPath expression. The
result of a path expression is a value tree while the result of the same XPath
expression is a set of nodes [4]. We can use XQuery [5] to compute the result of
a path expression as it is defined here.

The answer of a query on a value tree can be computed by merging the results
of its path expressions on the value tree. Let E = {e1, . . . , en} be the set of path
expressions constructed from all the answer paths of a query Q. The answer of
Q on a value tree T is the value tree

⋃

i∈[1,n] res(ei, T).
As an example consider the query Q2 on dimension graph G2, which is shown

in Figure 4(b). The answer paths for Q2 in G2 are shown in Section 4.3. These
answer paths generate the following path expressions:

r/ ∗pc type /(Sony|IBM)/Used
r/ ∗pc type / ∗pc category /(Sony|IBM)/Used
r/ ∗pc type / ∗pc category / ∗mobile type /(Sony|IBM)/Used

Evaluating these path expressions on the value tree T2 of Figure 1(b), one
can see that the result of the first path expression is an empty value tree. In

4 Minimality is meant with respect to the number of nodes or edges.

contrast, the second path expression contributes one path, while the third one
contributes two paths to the answer of Q2 on T2 (Figure 5(b)).

Consider also the query Q3 on dimension graph G3, which is shown in Figure
4(c). The answer paths for Q3 in G3 are shown in Section 4.3. They generate the
following path expressions:

r/ ∗pc type /Used/(Sony|IBM)
r/ ∗pc type /Used/ ∗pc category /(Sony|IBM)
r/ ∗pc type / ∗pc category /(Sony|IBM)/Used

Of those path expressions, evaluating the third one on the value tree T3 of
Figure 1(c) results in an empty value tree. Only the first two contribute paths
to the answer of Q3 on T3 (Figure 5(c)).

4.5 Querying multiple value trees

Consider the value trees T1, . . . , Tn over a dimension set D and let G1, . . . , Gn be
their dimension graphs respectively. The dimension graphs G1, . . . , Gn are not
necessarily the same. In order to query the value trees T1, . . . , Tn together, we
need a “global” dimension graph. Such a graph G can be constructed by merging
the dimension graphs G1, . . . , Gn. A query Q on G is defined on a dimension graph
Gi if it does not involve dimensions that occur in G but not in Gi. Otherwise,
it is not defined on Gi and it returns no answers. If Q is defined on Gi, it can
be checked for consistency and evaluated as described in the previous sections.
Notice that a query on the global dimension graph G can be applied to any of
the Gis without the use of mapping rules.

5 Conclusion

We presented a method for querying tree structures, called value trees. Our ap-
proach exploits semantic information for the nodes of value trees. A semantic
relationship between nodes in value trees was captured by the concept of a di-
mension. Dimension graphs were defined to capture structural information on the
dimensions of a value tree. However, dimension graphs are not plain structural
summaries of value trees, but rather semantically richer constructs that assist
query evaluation. We designed a query language to query value trees. Queries are
specified on the dimensions of the value tree and can optionally involve parent-
child and ancestor-descendant relationships between these dimensions. A query
is not restricted by the structure of a specific value tree. We provided necessary
and sufficient conditions for query unsatisfiability and we presented a technique
for evaluating satisfiable queries. Finally, we showed how dimension graphs can
be used to query multiple value trees in the presence of structural differences
and inconsistencies.

We are currently working towards two directions. We are first elaborating on
how our framework can be used for integrating tree structured data. In particu-
lar, we examine how to apply our techniques to query and integrate XML data

sources that conform to different DTDs. The second research direction involves
extending our query language with additional features, e.g. branching path ex-
pressions and disjunctions.

References

1. Exchangeable Faceted Metadata Language, (XFML), 2003, http://www.xfml.org/.
2. XML Topic Maps (XTM), 2001, http://www.topicmaps.org.
3. World Wide Web Consortium site (W3C), http://www.w3c.org.
4. XML Path Language (XPath). World Wide Web Consortium site. W3C, 2003-2005,

http://www.w3c.org/TR/xpath20/.
5. XML Query (XQuery). World Wide Web Consortium site, The Architecture Do-

main. W3C, 2003-2005, http://www.w3.org/XML/Query.
6. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from Relations to

Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.
7. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-based Integration of

XML Web Resources. In Proc. of the ICSW’02 Conference, Sardinia, Italy, 2002.
8. R. Behrens. A Grammar-based Model for XML Schema Integration. In Proc. of

the BNCOD’00 Conference, Exeter, UK, 2000.
9. S. Bergamaschi, F. Guerra, and M. Vincini. A Data Integration Framework for E-

commerce Product Classification. In Proc. of the ICSW’02 Conference, Sardinia,
Italy, 2002.

10. P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding Structure
to Unstructured Data. In Proc. of the ICDT’97 Conference, Delphi, Greece, 1997.

11. A. B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management. Addison
Wesley, 2003.

12. V. Christophides, S. Cluet, and J. Simeon. On Wrapping Query Languages and
Efficient XML Integration. In Proc. of the ACM SIGMOD’00 Conference, USA,
2000.

13. S. Cluet, P. Veltri, and D. Vodislav. Views in a Large Scale XML Repository. In
Proc. of the VLDB’01 Conference, Rome, Italy, 2001.

14. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: A
System for Extracting Document Type Descriptors from XML Documents. In
Proc. of the ACM SIGMOD’00 Conference, Dallas, Texas, USA, 2000.

15. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Op-
timization in Semistructured Databases. In Proc. of the VLDB’97 Conference,
Athens, Greece, 1997.

16. D. Kim, J. Kim, and S.-G. Lee. Catalog Integration for Electronic Commerce
through Category-hierarchy Merging Technique. In Proc. of the RIDE’02 Work-
shop, San Jose, USA, 2002.

17. M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. Xclust: Clustering XML Schemas for
Effective Integration. In Proc. of the CIKM’02 Conference, Virginia, USA, 2002.

18. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries over Het-
erogeneous Data Sources. In Proc. of the VLDB’01 Conference, Rome, Italy, 2001.

19. P. J. Marron, G. Lausen, and M. Weber. Catalog Integration Made Easy. In Proc.
of the ICDE’03 Conference, Bangalore, India (poster), 2003.

20. E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal, 10(4), 2001.

21. Y. Tzitzikas, N. Spyratos, P. Constantopoulos, and A. Analyti. Extended Faceted
Taxonomies for Web Catalogs. In Proc. of the WISE’02 Conference, Singapore,
Dec 2002.

